我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

物质和玻色–爱因斯坦凝聚

快捷方式: 差异相似杰卡德相似系数参考

物质和玻色–爱因斯坦凝聚之间的区别

物质 vs. 玻色–爱因斯坦凝聚

物质是一個科學上沒有明確定義的詞,一般是指靜止質量不為零的東西。物质也常用來泛稱所有組成可觀測物體的成份 。 所有可以用肉眼看到的物體都是由原子組成,而原子是由互相作用的次原子粒子所組成,其中包括由質子和中子組成的原子核,以及許多電子組成的電子雲 。 一般而言科學上會將上述的複合粒子視為物質,因為他們具有靜止質量及體積。相對的,像光子等无质量粒子一般不視為物質。不過不是所有具有靜止質量的粒子都有古典定義下的體積,像夸克及輕子等粒子一般會視為質點,不具有大小及體積。而夸克和輕子之間的交互作用才使得質子和中子有所謂的體積,也使得一般物體有體積。 物質常見的物質狀態有四種:固體、液體、氣體及等离子体。不過實驗技術的進步產生了許多新的物質狀態,像是玻色–爱因斯坦凝聚及费米子凝聚态。對於基本粒子的研究也產生了新的物質狀態,像是夸克-膠子漿 。在自然科學的歷史中,許多人都在研究物質的確切性質,物質是由許多離散組件組合而成的概念,即所謂的「物質粒子論」,最早是由古希臘哲學家留基伯及德谟克利特提出。 愛因斯坦證明所有物體都可以轉換為能量(即質能等價),之間的關係式即為著名的E. 玻色–爱因斯坦凝聚(Bose–Einstein condensate)是玻色子原子在冷却到接近绝对零度所呈现出的一种气态的、超流性的物质状态(物态)。1995年,麻省理工學院的沃夫岡·凱特利與科罗拉多大学鲍尔德分校的埃里克·康奈尔和卡尔·威曼使用气态的铷原子在170 nK(1.7 K)的低温下首次获得了玻色-爱因斯坦--。在这种状态下,几乎全部原子都聚集到能量最低的量子态,形成一个宏观的量子状态。.

之间物质和玻色–爱因斯坦凝聚相似

物质和玻色–爱因斯坦凝聚有(在联盟百科)5共同点: 原子光子物质状态阿尔伯特·爱因斯坦气体

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

原子和物质 · 原子和玻色–爱因斯坦凝聚 · 查看更多 »

光子

| mean_lifetime.

光子和物质 · 光子和玻色–爱因斯坦凝聚 · 查看更多 »

物质状态

物質狀態是指一種物質出現不同的相。早期來說,物質狀態是以它的體積性質來分辨。在固態時,物質擁有固定的形狀和容量;而在液態時,物質維持固定的容量但形狀會隨容器的形狀而改變;氣態時,物質不論有沒有容量都會膨漲以進行擴散。近期,科學家以分子之間的相互關係作分類。固態是指因分子之間因為相互的吸力因而只會在固定位置震動。而在液體的時候,分子之間距離仍然比較近,分子之間仍有一定的吸引力,因此只能在有限的範圍中活動。至於在氣態,分子之間的距離較遠,因此分子之間的吸引力並不顯著,所以分子可以隨意活動。電漿態,是在高溫之下出現的高度離化氣體。而由於相互之間的吸力是離子力,因而出現與氣體不同的性質,所以電漿態被認為是第四種物質狀態。假如有一種物質狀態不是由分子組成而是由不同力所組成,我們會考慮成一種新的物質狀態。例如:費米凝聚和夸克-膠子漿。 物質狀態亦可用相的轉變來表達。相的轉變可以是結構上的轉變又或者是出現一些獨特的性質。根據這個定義,每一種相都可以其他的相中透過相的轉變分離出來。例如水數種固體的相。超導電性便是由相的轉變引伸出來,因此便有超導電性的狀態。同樣,液晶體狀態和鐵磁性狀態都是用相的轉變所劃分出來並同時擁有不一樣的性質。.

物质和物质状态 · 物质状态和玻色–爱因斯坦凝聚 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

物质和阿尔伯特·爱因斯坦 · 玻色–爱因斯坦凝聚和阿尔伯特·爱因斯坦 · 查看更多 »

气体

气体是四种基本物质状态之一(其他三种分别为固体、液体、等离子体)。气体可以由单个原子(如稀有气体)、一种元素组成的单质分子(如氧气)、多种元素组成化合物分子(如二氧化碳)等组成。气体混合物可以包括多种气体物质,比如空气。气体与液体和固体的显著区别就是气体粒子之间间隔很大。这种间隔使得人眼很难察觉到无色气体。气体与液体一样是流体:它可以流动,可变形。与液体不同的是气体可以被压缩。假如没有限制(容器或力场)的话,气体可以扩散,其体积不受限制,沒有固定。气态物质的原子或分子相互之间可以自由运动。 氣體的特性介於液體和等离子体之間,氣體的溫度不會超過等离子体,氣體的溫度下限為簡併態夸克氣體,現在也越來越受到重視。高密度的原子氣體冷卻到非常低的低溫,可以依其統計特性分為玻色氣體和費米氣體,其他相態可以參照相態列表。.

气体和物质 · 气体和玻色–爱因斯坦凝聚 · 查看更多 »

上面的列表回答下列问题

物质和玻色–爱因斯坦凝聚之间的比较

物质有37个关系,而玻色–爱因斯坦凝聚有38个。由于它们的共同之处5,杰卡德指数为6.67% = 5 / (37 + 38)。

参考

本文介绍物质和玻色–爱因斯坦凝聚之间的关系。要访问该信息提取每篇文章,请访问: