徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

渲染和着色器

快捷方式: 差异相似杰卡德相似系数参考

渲染和着色器之间的区别

渲染 vs. 着色器

渲染(render,或称为绘制)在電腦繪圖中,是指以软件由模型生成图像的过程。模型是用语言或者数据结构进行严格定义的三维物体或虚拟场景的描述,它包括几何、视点、纹理、照明和阴影等信息。图像是数字图像或者位图图像。彩現用于描述:计算视频编辑软件中的效果,以生成最终视频的输出过程。 渲染是三维计算机图形学中的最重要的研究课题之一,并且在实践领域它与其它技术密切相关。在图形流水线中,渲染是最后一项重要步骤,通过它得到模型与动画最终显示效果。自从二十世纪七十年代以来,随着计算机图形的不断复杂化,渲染也越来越成为一项重要的技术。 渲染的应用领域有:计算机与视频游戏、模拟、电影或者电视特效以及可视化设计,每一种应用都是特性与技术的综合考虑。作为产品来看,现在已经有各种不同的渲染工具产品,有些集成到更大的建模或者动画包中,有些是独立产品,有些是开放源代码的产品。从内部来看,渲染工具都是根据各种学科理论,经过仔细设计的程序,其中有:光学、视觉感知、数学以及软件开发。 三维计算机图形的预渲染(Pre-rendering 或 Offline rendering)或者实时渲染(Real-time rendering 或 Online rendering)的速度都非常慢。预渲染的计算强度很大,需要大量的服务器运算完成,通常被用于电影制作;实时渲染经常用于三维视频游戏,通常依靠图形处理器(GPU)完成这个过程。. 计算机图形学领域中,着色器()是一种计算机程序,原本用于进行图像的浓淡处理(计算图像中的光照、亮度、颜色等),但近来,它也被用于完成很多不同领域的工作,比如处理CG特效、进行与浓淡处理无关的、甚至用于一些与计算机图形学无关的其它领域。 使用着色器在图形硬件上计算渲染效果有很高的自由度。尽管不是硬性要求,但目前大多数着色器是针对GPU开发的。GPU的可编程绘图管线已经全面取代传统的固定管线,可以使用着色器语言对其编程。构成最终图像的像素、顶点、纹理,它们的位置、色相、饱和度、亮度、对比度也都可以利用着色器中定义的算法进行动态调整。调用着色器的外部程序,也可以利用它向着色器提供的外部变量、纹理来修改这些着色器中的参数。 在电影后期处理、计算机成像、电子游戏等领域,着色器常被用来制作各种特效。除了普通的光照模型,着色器还可以调整图像的色相、饱和度、亮度、对比度,生成模糊、高光、有体积光源、失焦、卡通渲染、色調分離、畸变、凹凸贴图、色键(即所谓的蓝幕、绿幕抠像效果)、边缘检测等效果。.

之间渲染和着色器相似

渲染和着色器有(在联盟百科)10共同点: 三维模型圖形處理器凹凸贴图皮克斯动画工作室电子游戏OpenGL栅格化深度缓冲浓淡处理数字图像

三维模型

三維模型是物體的三維多邊形表示,通常用電腦或者其它影片設備進行顯示。顯示的物體是可以是現實世界的實體,也可以是虛構的東西,既可以小到原子,也可以大到很大的尺寸。任何物理自然界存在的東西都可以用三維模型表示。 三维模型经常用三维建模工具这种专门的软件生成,但是也可以用其它方法生成。作为点和其它信息集合的数据,三维模型可以手工生成,也可以按照一定的算法生成。尽管通常按照虚拟的方式存在于计算机或者计算机文件中,但是在纸上描述的类似模型也可以认为是三维模型。 三维模型广泛用任何使用三维图形的地方。实际上,它们的应用早于个人电脑上三维图形的流行。许多计算机游戏使用预先渲染的三维模型图像作为sprite用于实时计算机渲染。 现在,三维模型已经用于各种不同的领域。在医疗行业使用它们制作器官的精确模型;电影行业将它们用于活动的人物、物体以及现实电影;电子游戏产业将它们作为计算机与电子游戏中的资源;在科学领域将它们作为化合物的精确模型;建筑业将它们用来展示提议的建筑物或者风景表现;工程界将它们用于设计新设备、交通工具、结构以及其它应用领域;在最近几十年,地球科学领域开始构建三维地质模型。 三维模型本身是不可见的,可以根据简单的线框在不同细节层次渲染的或者用不同方法进行明暗描绘(shaded)。但是,许多三维模型使用纹理进行覆盖,将纹理排列放到三维模型上的过程称作纹理映射。纹理就是一个图像,但是它可以让模型更加细致并且看起来更加真实。例如,一个人的三维模型如果带有皮肤与服装的纹理那么看起来就比简单的单色模型或者是线框模型更加真实。 除了纹理之外,其它一些效果也可以用于三维模型以增加真实感。例如可以调整曲面法线以实现它们的照亮效果,一些曲面可以使用凸凹纹理映射方法以及其它一些立体渲染的技巧。 三维模型经常做成动画,例如,在故事片电影以及计算机与电子游戏中大量地应用三维模型。它们可以在三维建模工具中使用或者单独使用。为了容易形成动画,通常在模型中加入一些额外的数据,例如,一些人类或者动物的三维模型中有完整的骨骼系统,这样运动时看起来会更加真实,并且可以通过关节与骨骼控制运动。.

三维模型和渲染 · 三维模型和着色器 · 查看更多 »

圖形處理器

圖形處理器(graphics processing unit,縮寫:GPU),又稱顯示核心、視覺處理器、顯示晶片或繪圖晶片,是一種專門在個人電腦、工作站、遊戲機和一些行動裝置(如平板電腦、智慧型手機等)上執行繪圖運算工作的微處理器。 圖形處理器是輝達公司(NVIDIA)在1999年8月發表精視 256(GeForce 256)繪圖處理晶片時首先提出的概念,在此之前,電腦中處理影像輸出的顯示晶片,通常很少被視為是一個獨立的運算單元。而對手冶天科技(ATi)亦提出視覺處理器(Visual Processing Unit)概念。圖形處理器使顯示卡减少了對中央處理器(CPU)的依赖,並分擔了部分原本是由中央處理器所擔當的工作,尤其是在進行三維繪圖運算時,功效更加明顯。圖形處理器所採用的核心技術有硬體座標轉換與光源、立體環境材質貼圖和頂點混合、纹理壓缩和凹凸映射貼圖、雙重纹理四像素256位渲染引擎等。 圖形處理器可單獨與專用電路板以及附屬組件組成顯示卡,或單獨一片晶片直接內嵌入到主機板上,或者內建於主機板的北橋晶片中,現在也有內建於CPU上組成SoC的。個人電腦領域中,在2007年,90%以上的新型桌上型電腦和筆記型電腦擁有嵌入式繪圖晶片,但是在效能上往往低於不少獨立顯示卡。但2009年以後,AMD和英特爾都各自大力發展內建於中央處理器內的高效能整合式圖形處理核心,它們的效能在2012年時已經勝於那些低階獨立顯示卡,這使得不少低階的獨立顯示卡逐漸失去市場需求,兩大個人電腦圖形處理器研發巨頭中,AMD以AMD APU產品線取代旗下大部分的低階獨立顯示核心產品線。而在手持裝置領域上,隨著一些如平板電腦等裝置對圖形處理能力的需求越來越高,不少廠商像是高通(Qualcomm)、PowerVR、ARM、NVIDIA等,也在這個領域裏紛紛「大展拳腳」。 GPU不同于传统的CPU,如Intel i5或i7处理器,其内核数量较少,专为通用计算而设计。 相反,GPU是一种特殊类型的处理器,具有数百或数千个内核,经过优化,可并行运行大量计算。 虽然GPU在游戏中以3D渲染而闻名,但它们对运行分析、深度学习和机器学习算法尤其有用。 GPU允许某些计算比传统CPU上运行相同的计算速度快10倍至100倍。.

圖形處理器和渲染 · 圖形處理器和着色器 · 查看更多 »

凹凸贴图

凹凸贴图(bump mapping),又稱為凸凹纹理映射、皺面貼圖,是一项计算机图形学技术,在这项技术中每个待渲染的像素在计算照明之前都要加上一个从高度图中找到的扰动。这样得到的结果表面表现更加丰富、细致,更加接近物体在自然界本身的模样。法线贴图是一项常用的凹凸贴图技术,另外还有许多其它的实现技术,如视差映射等等。.

凹凸贴图和渲染 · 凹凸贴图和着色器 · 查看更多 »

皮克斯动画工作室

克斯動畫工作室(Pixar Animation Studios ,--),簡稱皮克斯(英语:PIXAR),是一家位於加州愛莫利維爾市的计算机动画制片厂 。該公司也制作電腦三維软件,如用于影视效果制作并符合自家制定的RenderMan规范的三维渲染软件包——PRMan。皮克斯的前身是盧卡斯影业于1979年成立的的電腦動畫部 。1986年,苹果公司联合創始人史提夫·乔布斯收購了卢卡斯的電腦動畫部,成立了皮克斯动画工作室。2006年,皮克斯被迪士尼以74亿美元收购,成为华特迪士尼公司的一部分,乔布斯亦因此成为迪士尼的最大個人股东。 截至2018年,皮克斯共发布了20部动画长片,第一部是1995年的《玩具总动员》,最近的一部是2018年的《超人总动员2》。皮克斯的20部作品都获得了好评与商业上的成功,除了《赛车总动员2》,这部电影虽然获得了商业上的成功,但得到的好评比皮克斯的其他作品大幅减少。这些作品都获得了CinemaScore至少“A-”的评价,表示得到了观众的积极接受。该公司也制作一些。截至2017年12月,该公司的所有作品在全世界累计获得了115亿美元的票房,平均每部电影获得6.08亿美元。皮克斯电影都曾进入電影票房收入前五十名,其中《海底总动员》与《玩具总动员3》一直保持在前五十名,《玩具总动员3》在全球获得了十亿美元票房。 皮克斯至2018年已获得15次奥斯卡奖、9次金球奖、11次格莱美奖以及。自2001年奥斯卡最佳动画片奖设立以来,皮克斯电影有九部获奖,分别是《海底总动员》、《超人总动员》、《料理鼠王》、《机器人总动员》、《飞屋环游记》、《玩具总动员3》、《勇敢传说》、《头脑特工队》、《可可夜總會》;还有两部《怪兽电力公司》与《汽車總動員》获得提名。《飞屋环游记》与《玩具总动员3》提名奥斯卡最佳影片奖。 2009年9月6日,皮克斯成员约翰·拉塞特、布拉德·伯德、皮特·多克特、安德鲁·斯坦顿、李·安克里奇在威尼斯电影节上获得榮譽金獅獎,由乔治·卢卡斯颁奖。.

渲染和皮克斯动画工作室 · 皮克斯动画工作室和着色器 · 查看更多 »

电子游戏

电子游戏(或稱為电玩游戏,簡稱電玩;有時直接按英文「video game」翻譯為影像遊戲或電動--遊戲),是指所有依託于電子媒體平臺而運行的交互遊戲。電子遊戲按照遊戲的載體劃分,可分為街機遊戲、掌機遊戲、電視遊戲(或稱家用機遊戲、视--频遊戲以及部份地區稱視--訊遊戲)、電腦遊戲和手機遊戲(或稱行動遊戲),是指人通过电子设备(如电脑、游戏机及手机等)进行的遊戲。西方游戏界往往将电子游戏(Electronic games)细分为影像游戏(Video game)和听觉游戏(Audio game)等,而中文游戏界则习惯一律以「电子游戏」指代。.

渲染和电子游戏 · 电子游戏和着色器 · 查看更多 »

OpenGL

OpenGL(Open Graphics Library,譯名:開放圖形庫或者“開放式圖形庫”)是用於渲染2D、3D矢量圖形的跨語言、跨平台的應用程序編程接口(API)。這個接口由近350個不同的函數调用組成,用來從簡單的圖形位元繪製複雜的三維景象。而另一种程式介面系统是仅用于Microsoft Windows上的Direct3D。OpenGL常用於CAD、虛擬實境、科學視覺化程式和電子遊戲開發。 OpenGL的高效實現(利用了图形加速硬件)存在于Windows,部分UNIX平台和Mac OS。這些實現一般由顯示裝置廠商提供,而且非常依賴於該廠商提供的硬體。開放原始碼函式庫Mesa是一個純基於軟體的圖形API,它的代码兼容於OpenGL。但是,由于许可证的原因,它只声称是一个“非常相似”的API。 OpenGL规范由1992年成立的OpenGL架构评审委员会(ARB)维护。ARB由一些對建立一个统一的、普遍可用的API特别感兴趣的公司组成。根据OpenGL官方网站,2002年6月的ARB投票成员包括3Dlabs、Apple Computer、ATI Technologies、Dell Computer、Evans & Sutherland、Hewlett-Packard、IBM、Intel、Matrox、NVIDIA、SGI和Sun Microsystems,Microsoft曾是创立成员之一,但已于2003年3月--。.

OpenGL和渲染 · OpenGL和着色器 · 查看更多 »

栅格化

栅格化是将向量圖形格式表示的图像转换成點陣圖以用于显示器或者印表機输出的过程。.

栅格化和渲染 · 栅格化和着色器 · 查看更多 »

深度缓冲

在计算机图形学中,深度缓冲是在三维图形中处理图像深度坐标的过程,这个过程通常在硬件中完成,它也可以在软件中完成,它是可见性问题的一个解决方法。可见性问题是确定渲染场景中哪部分可见、哪部分不可见的问题。画家算法是另外一种常用的方法,尽管效率较低,但是也可以处理透明场景元素。深度缓冲也称为Z缓冲。 当三维图形卡渲染物体的时候,每一个所生成的像素的深度(即z坐标)就保存在一个缓冲区中。这个缓冲区叫作z缓冲区或者深度缓冲区,这个缓冲区通常组织成一个保存每个屏幕像素深度的x-y二维数组。如果场景中的另外一个物体也在同一个像素生成渲染结果,那么图形处理卡就会比较二者的深度,并且保留距离观察者较近的物体。然后这个所保留的物体点深度保存到深度缓冲区中。最后,图形卡就可以根据深度缓冲区正确地生成通常的深度感知效果:较近的物体遮挡较远的物体。这个过程叫作z消隐。 深度缓冲的分辨率对于场景质量有很大的影响:当两个物体非常接近的时候,16位的深度缓冲区可能会导致“z缓冲区fighting”的人为噪声;使用24位或者32位的深度缓冲区就会表现得较好;由于精度太低,所以很少使用8位的深度缓冲区。.

深度缓冲和渲染 · 深度缓冲和着色器 · 查看更多 »

浓淡处理

浓淡处理(Shading,也称明暗处理、着色法)是在三维模型或插画中通过不同的亮度表现深度的方法。.

浓淡处理和渲染 · 浓淡处理和着色器 · 查看更多 »

数字图像

數位影像,是二维图像用有限数字数值像素的表示。 通常,像素在计算机中保存为二维整数数组的光栅图像,这些值经常用压缩格式进行传输和储存。 数字图像可以许多不同的输入设备和技术生成,例如数码相机、扫描仪、坐标测量机、seismographic profiling、airborne radar等等,也可以从任意的非图像数据合成得到,例如数学函数或者三维几何模型,三维几何模型是计算机图形学的一个主要分支。数字图像处理领域就是研究它们的变换算法。.

数字图像和渲染 · 数字图像和着色器 · 查看更多 »

上面的列表回答下列问题

渲染和着色器之间的比较

渲染有61个关系,而着色器有49个。由于它们的共同之处10,杰卡德指数为9.09% = 10 / (61 + 49)。

参考

本文介绍渲染和着色器之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »