之间流體動力學和萊昂哈德·歐拉相似
流體動力學和萊昂哈德·歐拉有(在联盟百科)6共同点: 力矩,微分方程,黏度,欧拉方程 (流体动力学),激波,流体力学。
力矩
在物理学裏,作用力促使物體繞著轉動軸或支點轉動的趨向,稱為力矩(torque),也就是扭转的力。转动力矩又称为转矩。力矩能够使物体改变其旋转运动。推擠或拖拉涉及到作用力 ,而扭转則涉及到力矩。如图右,力矩\boldsymbol\,\!等於径向向量\mathbf\,\!与作用力\mathbf\,\!的叉积。 簡略地说,力矩是一種施加於好像螺栓或飛輪一類的物體的扭轉力。例如,用扳手的開口箝緊螺栓或螺帽,然後轉動扳手,這動作會產生力矩來轉動螺栓或螺帽。 根據国际单位制,力矩的单位是牛顿\cdot米。本物理量非能量,因此不能以焦耳(J)作單位;根據英制单位,力矩的单位则是英尺\cdot磅。力矩的表示符号是希腊字母\boldsymbol\,\!,或\mathbf\,\!。 力矩與三個物理量有關:施加的作用力\mathbf\,\!、從轉軸到施力點的位移向量\mathbf\,\!、兩個向量之間的夾角\theta\,\!。力矩\boldsymbol\,\!以向量方程式表示為 力矩的大小.
力矩和流體動力學 · 力矩和萊昂哈德·歐拉 ·
微分方程
微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.
黏度
黏度(Viscosity),是黏性的程度,是材料的首要功能,也称动力粘度、粘(滞)性系数、内摩擦系数。不同物质的黏度不同,例如在常温(20℃)及常压下,空气的黏度为0.018mPa·s(10^-5),汽油为0.65mPa·s,水为1 mPa·s,血液(37℃)为4~15mPa·s,橄榄油为102 mPa·s,蓖麻油为103 mPa·s,蜂蜜为104mPa·s,焦油为106 mPa·s,沥青为108 mPa·s,等等。最普通的液体黏度大致在1~1000 m Pa·s,气体的黏度大致在1~10μPa·s。糊状物、凝胶、乳液和其他复杂的液体就不好说了。一些像黄油或人造黄油的脂肪很黏,更像软的固体,而不是流动液体。 黏滯力是流體受到剪應力變形或拉伸應力時所產生的阻力。在日常生活方面,黏滯像是「黏稠度」或「流體內的摩擦力」。因此,水是「稀薄」的,具有較低的黏滯力,而蜂蜜是「濃稠」的,具有較高的黏滯力。簡單地說,黏滯力越低(黏滯係數低)的流體,流動性越佳。 黏滯力是粘性液體內部的一種流動阻力,並可能被認為是流體自身的摩擦。黏滯力主要來自分子間相互的吸引力。例如,高粘度酸性熔岩產生的火山通常為高而陡峭的錐狀火山,因為其熔岩濃稠,在其冷卻之前無法流至遠距離因而不斷向上累加;而黏滯力低的鎂鐵質熔岩將建立一個大規模、淺傾的斜盾狀火山。所有真正的流體(除超流體)有一定的抗壓力,因此有粘性。 沒有阻力對抗剪切應力的流體被稱為理想流體或無粘流體。 黏度\mu定義為流體承受剪應力時,剪應力與剪應變梯度(剪應變隨位置的變化率)的比值,数学表述为: 式中:\tau为剪应力,u为速度场在x方向的分量,y为与x垂直的方向坐标。 黏度較高的物質,比較不容易流動;而黏度較低的物質,比較容易流動。例如油的黏度較高,因此不容易流動;而水黏度較低,不但容易流動,倒水時還會出現水花,倒油時就不會出現類似的現象。.
流體動力學和黏度 · 萊昂哈德·歐拉和黏度 ·
欧拉方程 (流体动力学)
在流體動力學中,歐拉方程是一組支配無黏性流體運動的方程,以萊昂哈德·歐拉命名。方程組各方程分別代表質量守恆(連續性)、動量守恆及能量守恆,對應零黏性及無熱傳導項的納維-斯托克斯方程。歷史上,只有連續性及動量方程是由歐拉所推導的。然而,流體動力學的文獻常把全組方程——包括能量方程——稱為“歐拉方程”。 跟納維-斯托克斯方程一樣,歐拉方程一般有兩種寫法:“守恆形式”及“非守恆形式”。守恆形式強調物理解釋,即方程是通過一空間中某固定體積的守恆定律;而非守恆形式則強調該體積跟流體運動時的變化狀態。 歐拉方程可被用於可壓縮性流體,同時也可被用於非壓縮性流體——這時應使用適當的狀態方程,或假設流速的散度為零。 本條目假設經典力學適用;當可壓縮流的速度接近光速時,詳見相對論性歐拉方程。.
欧拉方程 (流体动力学)和流體動力學 · 欧拉方程 (流体动力学)和萊昂哈德·歐拉 ·
激波
震波(Shock Wave),又譯衝擊波、駭波或激波,属于紊流的一种传播形式。如同其他通常形式下的波动,激波也可以通过介质传输能量。在某些不存在物理介质的特殊情况下,激波可以通过场,如电磁场来传输能量。激波的主要特点表现为介质特性(如压力、温度、或速度)在激波前后发生了一个像正的阶梯函数般的突然变化。与此相应的负的阶跃则为膨胀波。声学激波其速度一般高于通常波速(在空气中即音速)。 激波随距离的增加耗散很快,與孤波(另一种形式的非线性波)不同。而且,膨胀波总是伴随着激波,并最终与激波合并。这部分抵消了激波的影响。声爆,一种超音速飞机通过时产生的声学现象,即是由激波——膨胀波对的耗散和湮灭所产生的。.
流體動力學和激波 · 激波和萊昂哈德·歐拉 ·
流体力学
流體力學(Fluid mechanics)是力學的一門分支,是研究流體(包含氣體、液體及等離子體)現象以及相關力學行為的科學。流體力學可以按照研究對象的運動方式分為流體靜力學和流體動力學,前者研究處於靜止狀態的流體,後者研究力對於流體運動的影響。流體力學按照應用範圍,分為:空氣力學及水力學等等。 流體力學是連續介質力學的一門分支,是以宏觀的角度來考慮系統特性,而不是微觀的考慮系統中每一個粒子的特性。流体力学(尤甚是流體動力學)是一個活躍的研究領域,其中有許多尚未解決或部分解決的問題。流體動力學所應用的數學系統非常複雜,最佳的處理方式是利用電腦進行數值分析。有一個現代的學科稱為計算流體力學,就是用數值分析的方式求解流體力學問題。是一個將流體流場視覺化並進行分析的實驗方式,也利用了流體高度可見化的特點。 理論流體力學的基本方程是纳维-斯托克斯方程,簡稱N-S方程,纳维-斯托克斯方程由一些微分方程組成,通常只有透過給予特定的邊界條件與使用數值計算的方式才可求解。纳维-斯托克斯方程中包含速度\vec.
上面的列表回答下列问题
- 什么流體動力學和萊昂哈德·歐拉的共同点。
- 什么是流體動力學和萊昂哈德·歐拉之间的相似性
流體動力學和萊昂哈德·歐拉之间的比较
流體動力學有82个关系,而萊昂哈德·歐拉有121个。由于它们的共同之处6,杰卡德指数为2.96% = 6 / (82 + 121)。
参考
本文介绍流體動力學和萊昂哈德·歐拉之间的关系。要访问该信息提取每篇文章,请访问: