徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

氢和萊納斯·鮑林

快捷方式: 差异相似杰卡德相似系数参考

氢和萊納斯·鮑林之间的区别

氢 vs. 萊納斯·鮑林

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。. 萊納斯·卡爾·鮑林(Linus Carl Pauling,),美國化学家,量子化學和結構生物學的先驱者之一。1954年因在化學鍵方面的工作取得诺贝尔化学奖,1963年因反對核彈在地面測試的行動获得1962年度的诺贝尔和平奖,成為获得不同诺贝尔奖项的兩人之一(另一人為居里夫人);也是唯一的一位每次都是独立地获得诺贝尔奖的获奖人。其後他主要的行動為支持維他命C在醫學的功用。鮑林被认为是20世纪对化学科学影响最大的人之一,他所撰写的《化学键的本质》被认为是化学史上最重要的著作之一。他以量子力學入手分析化學問題,結論卻以直觀、淺白的概念重新闡述,即便未受量子力學訓練的化學家亦可利用準確的直觀圖像研究化學問題,影響至為深遠,比如他所提出的許多概念:电负度、共振論、价键理论、混成軌域、蛋白质二級結構等概念和理论,如今已成為化学領域最基础和最广泛使用的觀念。 他晚年过度吹捧营养补充品的药用价值,并提倡使用高剂量的维生素C治疗感冒,给自己的声誉带来了负面影响。.

之间氢和萊納斯·鮑林相似

氢和萊納斯·鮑林有(在联盟百科)8共同点: 原子序数史丹佛大學化學鍵生物化学电子薛定谔方程量子力学氢键

原子序数

原子序数(Atomic Number)是一个原子核内质子的数量,因此也稱質子數,也等於原子電中性時的核外電子數。拥有同一原子序的原子属于同一化学元素。原子序数的符号是Z。 通常原子序数标在元素符号的左下方: 1H是氢,8O是氧。 但特定元素的原子序总是确定的,因此这个值很少这样写。 德米特里·门捷列夫在制定其元素周期表时发现,假如将元素按其原子核质量来排列会出现一些不规则的情况。比如碲的原子核比碘重,但从化学性能上来说,碲明显是与氧、硫、硒一族的,而碘与氟、氯、溴是一族的,也就是说,碘要排在碲之后。1913年亨利·莫塞莱发现这个异常的解决方法是不按原子重量,而按原子核的电荷数,即原子序来排列。 然而原子序数亦有负数,反氢记作-1H,反氦记作-2He。.

原子序数和氢 · 原子序数和萊納斯·鮑林 · 查看更多 »

史丹佛大學

小利蘭·史丹福大學(Leland Stanford Junior University),常直接稱為史丹福大學(Stanford University),為一所坐落於美國加利福尼亞州史丹福的私立研究型大學,因其學術聲譽和创业氛围而獲評為世界上最知名的高等學府之一。 斯坦福大學於1891年由時任加州參議員及州長的鐵路大亨利蘭·史丹福和他的妻子創辦。這是為了紀念他們因傷寒而於16歲生日前夕去世的兒子()。其為男女及宗教自由的學校,在1930年代前所有學費全免。可是,1893年利蘭·史丹福的逝世及1906年對校園造成重大損毀的三藩市大地震,為該校帶來嚴重的財政困難後才開始收費。二次世界大戰後,時任學校教務長的弗雷德里克·特曼全力支持校友與教職員的企業精神,希望能建立一個自給自足的本地工業,這也是現今硅谷的源流。自上世紀七十年代,史丹福成為了美國SLAC國家加速器實驗室的所在地,及其中一個高等研究計劃署網路(互聯網雛形)的起源地。 學校的校園位於矽谷的西北方,鄰近帕羅奧圖。校方的各個學術部門被歸入七所學術學院內,而包括生物保育區及加速實驗室在內的其他資產則設於主校區之外。此校同時為最富有的教育機構之一,並為第一所在一年內獲得超過十億美元捐款升幅的大學。 史丹福為一所擁有高住宿率及高選擇性的大學,當中的研究生課程較本科的多元化。該校也是馬丁路德金手寫原稿的保存地。史丹福學生透過36支代表隊參與不同的體育競賽,其為兩所太平洋十二校聯盟的私立大學之一。有關校隊曾奪得過104次大學體育協會賽事的冠軍,成績於眾多大學中位列第二。自1994-95年起,其亦一直為全國大學體育競技董事杯的年度得主。 史丹福培養了不少著名人士。其校友涵蓋30名富豪企業家及17名太空員,亦為培養最多美國國會成員的院校之一。史丹福校友創辦了眾多著名的公司機構,如:谷歌、雅虎、惠普、耐克、昇陽電腦等,這些企業的資金合計相等於全球第十大經濟體系。共81名諾貝爾獎得主現或曾於該校學習或工作。.

史丹佛大學和氢 · 史丹佛大學和萊納斯·鮑林 · 查看更多 »

化學鍵

#重定向 化学键.

化學鍵和氢 · 化學鍵和萊納斯·鮑林 · 查看更多 »

生物化学

生物化学(biochemistry,也作 biological chemistry),顾名思义是研究生物体中的化学进程的一门学科,常常被简称为生化。它主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核酸等生物大分子的结构和功能。而对于化学生物学来说,则着重于利用化学合成中的方法来解答生物化学所发现的相关问题。 虽然存在着大量不同的生物分子,但实际上有很多大的复合物分子(称为“聚合物”)是由相似的亚基(称为“单体”)结合在一起形成的。每一类生物聚合物分子都有自己的一套亚基类型。例如,蛋白质是由20种氨基酸所组成,而脱氧核糖核酸(DNA)由4种核苷酸构成。生物化学研究集中于重要生物分子的化学性质,特别着重于酶促反应的化学机理。 在生物化学研究中,对细胞代谢和内分泌系统的研究进行得相当深入。生物化学的其他研究领域包括遗传密码(DNA和RNA)、 蛋白质生物合成、跨膜运输(membrane transport)以及细胞信号转导。.

氢和生物化学 · 生物化学和萊納斯·鮑林 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

氢和电子 · 电子和萊納斯·鮑林 · 查看更多 »

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

氢和薛定谔方程 · 萊納斯·鮑林和薛定谔方程 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

氢和量子力学 · 萊納斯·鮑林和量子力学 · 查看更多 »

氢键

氫鍵是分子間作用力的一種,是一种永久偶极之间的作用力,氢键发生在已经以共价键与其它原子键结合的氢原子与另一个原子之间(X-H…Y),通常发生氢键作用的氢原子两边的原子(X、Y)都是电负性较强的原子。氢键既可以是分子间氢键,也可以是分子内的。其键能最大约为200kJ/mol,一般为5-30kJ/mol,比一般的共价键、离子键和金属键键能要小,但强于静电引力。 氢键对于生物高分子具有尤其重要的意义,它是蛋白质和核酸的二、三和四级结构得以稳定的部分原因。.

氢和氢键 · 氢键和萊納斯·鮑林 · 查看更多 »

上面的列表回答下列问题

氢和萊納斯·鮑林之间的比较

氢有219个关系,而萊納斯·鮑林有75个。由于它们的共同之处8,杰卡德指数为2.72% = 8 / (219 + 75)。

参考

本文介绍氢和萊納斯·鮑林之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »