徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

氟和碱金属

快捷方式: 差异相似杰卡德相似系数参考

氟和碱金属之间的区别

氟 vs. 碱金属

氟是一种化学元素,符号为F,其原子序数为9,是最轻的卤素。其单质在标准状况下为浅黄色的双原子气体,有剧毒。作为电负性最强的元素,氟极度活泼,几乎与所有其它元素,包括某些惰性气体元素,都可以形成化合物。 在所有元素中,氟在宇宙中的丰度排名为24,在地壳中丰度排名13。萤石是氟的主要矿物来源,1529年该矿物的性质首次被描述。由于在冶炼中将萤石加入金属矿石可以降低矿石的熔点,萤石和氟包含有拉丁语中表示流动的词根fluo。尽管在1810年就已经认为存在氟这种元素,由于氟非常难以从其化合物中分离出来,并且分离过程也非常危险,直到1886年,法国化学家亨利·莫瓦桑才采用低温电解的方法分离出氟单质。许多早期的实验者都因为他们分离氟单质的尝试受到伤害甚至去世。莫瓦桑的分离方法在现代生产中仍在使用。自第二次世界大战的曼哈顿工程以来,单质氟的最大应用就是合成铀浓缩所需的六氟化铀。 由于提纯氟单质的费用甚高,大多数的氟的商业应用都是使用其化合物,开采出的萤石中几乎一半都用于炼钢。其余的萤石转化为具有腐蚀性的氟化氢并用于合成有机氟化物,或者转化为在铝冶炼中起到关键作用的冰晶石。有机氟化物具有很高的化学稳定性,其主要用途是制冷剂、绝缘材料以及厨具(特氟龙)。诸如阿托伐他汀和氟西汀等药物也含有氟。由于氟离子能够抑制龋齿,氟化水和牙膏中也含有氟。全球与氟相关的化工业年销售额超过150亿美元。 气体是温室气体,其温室效应是二氧化碳的100到20000倍。由于碳氟键强度极高,有机氟化合物在环境中难以降解,能够长期存在。在哺乳动物中,氟没有已知的代谢作用,而一些植物能够合成能够阻止食草动物的有机氟毒素。. 碱金属是指在元素周期表中同属一族的六个金属元素:锂、钠、钾、铷、铯、钫.

之间氟和碱金属相似

氟和碱金属有(在联盟百科)46共同点: 原子序数卤素单一同位素元素单键双原子分子官能团中子二氧化碳冰晶石元素皮米石墨硫酸碱土金属离子键稀有气体电子亲合能电子排布电离能电解电解质电负性过氧化物脂肪酸...IUPAC标准状况氧化态溶解性有效核电荷放射性同位素 扩展索引 (16 更多) »

原子序数

原子序数(Atomic Number)是一个原子核内质子的数量,因此也稱質子數,也等於原子電中性時的核外電子數。拥有同一原子序的原子属于同一化学元素。原子序数的符号是Z。 通常原子序数标在元素符号的左下方: 1H是氢,8O是氧。 但特定元素的原子序总是确定的,因此这个值很少这样写。 德米特里·门捷列夫在制定其元素周期表时发现,假如将元素按其原子核质量来排列会出现一些不规则的情况。比如碲的原子核比碘重,但从化学性能上来说,碲明显是与氧、硫、硒一族的,而碘与氟、氯、溴是一族的,也就是说,碘要排在碲之后。1913年亨利·莫塞莱发现这个异常的解决方法是不按原子重量,而按原子核的电荷数,即原子序来排列。 然而原子序数亦有负数,反氢记作-1H,反氦记作-2He。.

原子序数和氟 · 原子序数和碱金属 · 查看更多 »

卤素

卤素是元素周期表上的第ⅦA族元素(IUPAC新规定:17族),包括氟(F)、氯(Cl)、溴(Br)、碘(I)、-zh-hans:砹; zh-hant:砈;-(At)和(Ts)。.

卤素和氟 · 卤素和碱金属 · 查看更多 »

单一同位素元素

單一同位素元素是指只有一個穩定同位素的元素。.

单一同位素元素和氟 · 单一同位素元素和碱金属 · 查看更多 »

单键

#重定向單鍵.

单键和氟 · 单键和碱金属 · 查看更多 »

双原子分子

雙原子分子指所有由兩個原子組成的分子。雙原子分子內的化學鍵通常是共價鍵。 很多非金屬元素(包括氫、氮、氧、氟、氯、溴、碘等)的單質均是雙原子分子。其他元素(如磷)也可能以雙原子分子構成單質,但這些雙原子分子並不穩定。這些構成單質的雙原子分子稱為同核雙原子分子。其中,氮和氧的同核雙原子分子佔地球大氣層成份的 99%。 以雙原子分子存在的化合物包括一氧化碳、一氧化氮、氯化氫等。這些雙原子分子稱為異核雙原子分子。.

双原子分子和氟 · 双原子分子和碱金属 · 查看更多 »

官能团

官能团(英文:Functional group),是决定有机化合物的化学性质的原子和原子团。.

官能团和氟 · 官能团和碱金属 · 查看更多 »

中子

| magnetic_moment.

中子和氟 · 中子和碱金属 · 查看更多 »

二氧化碳

二氧化碳(IUPAC名:carbon dioxide,分子式:CO2)是空氣中常見的化合物,由两个氧原子与一个碳原子通过共价键连接而成。空氣中有微量的二氧化碳,約佔0.04%。二氧化碳略溶於水中,形成碳酸,碳酸是一種弱酸。 在二氧化碳分子中,碳原子的成键方式是sp杂化轨道与氧原子成键。碳原子的两个sp杂化轨道分别与两个氧原子生成两个σ键。碳原子上两个没有参加杂化(混成)的p轨道与成键的sp杂化轨道成90°的直角,并同氧原子的p轨道分别发生重叠,故缩短了碳氧键的间距。 二氧化碳平均约占大气体积的400ppm,不過每年因為人為的排放增加,比率還在逐步上升。2018年4月大氣二氧化碳月均濃度超過410ppm,為過去80萬年來最高。大气中的二氧化碳含量随季节变化,这主要是由于植物生长的季节性变化而导致的。当春夏季来临时,植物由于光合作用消耗二氧化碳,其含量随之减少;反之,当秋冬季来临时,植物不但不进行光合作用,反而制造二氧化碳,其含量随之上升。 二氧化碳常壓下為無色、無味、不助燃、不可燃的氣體。二氧化碳是一種溫室氣體。二氧化碳的濃度自1900年至2016年11月增長了約127ppm。.

二氧化碳和氟 · 二氧化碳和碱金属 · 查看更多 »

冰晶石

冰晶石(英語:Cryolite)一种矿物,主要成分为六氟铝酸钠(Na3AlF6),白色单斜晶系(109摄氏度),微溶于水,能溶于氧化铝,在电解铝工业作助熔剂、制造乳白色玻璃和搪瓷的遮光剂。格陵蘭西海岸的伊維圖特(Ivigtût)是冰晶石的主要產地,此矿于1987年开采完毕。现时多以萤石人工合成六氟铝酸钠供工业使用。.

冰晶石和氟 · 冰晶石和碱金属 · 查看更多 »

元素

#重定向 化學元素.

元素和氟 · 元素和碱金属 · 查看更多 »

皮米

米(符號 pm,picometre、)是长度单位,1皮米相当于1米的一兆(即一萬億)分之一, 即10-12米。有时在原子物理学中称为微微米(micromicron).

氟和皮米 · 皮米和碱金属 · 查看更多 »

石墨

石墨(Graphite),又稱黑鉛(Black Lead),是碳的一種同素異形體(碳的其他同素異形體有很多,為人熟悉的例如鑽石)。作为最軟的礦物之一,石墨不透明且觸感油膩,顏色由鐵黑到鋼鐵灰不等,形狀可呈晶體狀、薄片狀、鱗狀、條紋狀、層狀體,或散佈在變質岩(由煤、碳質岩石或碳質沉積物,受到區域變質作用或是岩漿侵入作用形成)之中。化学性质不活泼,具有耐腐蚀性。.

氟和石墨 · 石墨和碱金属 · 查看更多 »

硫是一种化学元素,在元素周期表中它的化学符号是S,原子序数是16。硫是一种非常常见的无味无臭的非金属,纯的硫是黄色的晶体,又稱做硫黄、硫磺。硫有许多不同的化合价,常見的有-2, 0, +4, +6等。在自然界中常以硫化物或硫酸盐的形式出现,尤其在火山地区纯的硫也在自然界出现。硫单质难溶于水,微溶于乙醇,易溶于二硫化碳。对所有的生物来说,硫都是一种重要的必不可少的元素,它是多种氨基酸的组成部分,尤其是大多数蛋白质的组成部分。它主要被用在肥料中,也廣泛地被用在火药、潤滑劑、殺蟲劑和抗真菌剂中。.

氟和硫 · 硫和碱金属 · 查看更多 »

硫酸

硫酸(化学分子式為)是一种具有高腐蚀性的强矿物酸,一般為透明至微黄色,在任何浓度下都能与水混溶并且放热。有时,在工业製造过程中,硫酸也可能被染成暗褐色以提高人们对它的警惕性。 作為二元酸的硫酸在不同浓度下有不同的特性,而其对不同物质,如金属、生物组织、甚至岩石等的腐蚀性,都归根于它的强酸性,以及它在高浓度下的强烈脱水性(化学性质)、吸水性(物理性质)与氧化性。硫酸能对皮肉造成极大的伤害,因为它除了会透过酸性水解反应分解蛋白质及脂肪造成化学烧伤外,还会与碳水化合物发生脱水反应并造成二级火焰性灼伤;若不慎入眼,更会破坏视网膜造成永久失明。故在使用时,应做足安全措施。另外,硫酸的吸水性可以用来干燥非碱性气体 。 正因為硫酸有不同的特性,它也有不同的应用,如家用强酸通渠剂、铅酸蓄电池的电解质、肥料、炼油厂材料及化学合成剂等。 硫酸被广泛生產,最常用的工业方法為接触法。.

氟和硫酸 · 硫酸和碱金属 · 查看更多 »

碱土金属

碱土金属指的是元素週期表上第 2 族(ⅡA族)的六个金属元素,包括鈹、鎂、鈣、鍶、鋇 和放射性元素鐳。 鹼土金屬都是銀白色的,比較軟的金屬,密度比較小。鹼土金屬在化合物中是以+2的氧化態存在。鹼土金屬原子失去電子變為陽離子時,最外層一般是8個電子,但铍離子最外層只有2個電子。 碱土金属具有很好的延展性、可以制成许多合金、如鎂鋁合金。 碱土金属都是活泼金属。.

氟和碱土金属 · 碱土金属和碱金属 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

氟和碳 · 碱金属和碳 · 查看更多 »

磷(Phosphorum,化学符号:P)是一种化学元素,它的原子序数是15。.

氟和磷 · 碱金属和磷 · 查看更多 »

离子键

离子键又被称为盐键,是化学键的一种,通过两个或多个原子或化学基团失去或获得电子而成为离子后形成。带相反电荷的原子或基团之间存在静电吸引力,两个带相反电荷的原子或基团靠近时,周围水分子被释放为自由水中,带负电和带正电的原子或基团之间产生的静电吸引力以形成离子键。 此类化学键往往在金属与非金属间形成。失去电子的往往是金属元素的原子,而获得电子的往往是非金属元素的原子。带有相反电荷的离子因电磁力而相互吸引,从而形成化学键。离子键较氢键强,其强度与共价键接近。 仅当总体的能级下降的时候,反应才会发生(由化学键联接的原子较自由原子有着较低的能级)。下降越多,形成的键越强。 现实中,原子间并不形成“纯”离子键。所有的键都或多或少带有共价键的成分。成键原子之间电平均程度越高,离子键成分越低。.

氟和离子键 · 碱金属和离子键 · 查看更多 »

稀有气体

--、鈍氣、高貴氣體,是指元素周期表上的18族元素(IUPAC新规定,即原来的0族)。它们性质相似,在常温常压下都是无色无味的单原子气体,很难进行化学反应。天然存在的稀有气体有六种,即氦(He)、氖(Ne)、氩(Ar)、氪(Kr)、氙(Xe)和具放射性的氡(Rn)。而人工合成的Og原子核非常不稳定,半衰期很短。根据元素周期律,估计Og比氡更活泼。不過,理论计算显示,它可能会非常活泼,并不一定能称为稀有气体;根據預測,同為第七週期的碳族元素鈇反而能表現出稀有氣體的性質。 稀有气体的特性可以用现代的原子结构理论来解释:它们的最外电子层的电子已「满」(即已达成八隅体状态),所以它们非常稳定,极少进行化学反应,至今只成功制备出几百种稀有气体化合物。每种稀有气体的熔点和沸点十分接近,温度差距小于10 °C(18 °F),因此它们仅在很小的温度范围内以液态存在。 经气体液化和分馏方法可从空气中获得氖、氩、氪和氙,而氦气通常提取自天然气,氡气则通常由镭化合物经放射性衰变后分离出来。稀有气体在工业方面主要应用在照明设备、焊接和太空探测。氦也会应用在深海潜水。如潜水深度大于55米,潜水员所用的压缩空气瓶内的氮要被氦代替,以避免氧中毒及氮麻醉的徵状。另一方面,由于氢气非常不稳定,容易燃烧和爆炸,现今的飞艇及气球都采用氦气替代氢气。.

氟和稀有气体 · 碱金属和稀有气体 · 查看更多 »

电子亲合能

在一般化學與原子物理學中,电子亲合能(或电子亲和势、电子亲和力,electron affinity,Eea)的定義是,將一個電子加入一個氣態的原子或分子所需耗費,或是釋出的能量。 在固態物理學之中,對於一表面的電子親合能定義不同。.

氟和电子亲合能 · 电子亲合能和碱金属 · 查看更多 »

电子排布

電子排序,即電子組態,亦即電子構型,指電子在原子、分子或其他物理結構中的每一層電子層上的排序及排列形態。 正如其他基本粒子,電子遵從量子物理學,而不是一般的經典物理學;電子也因此有波粒二象性。而且,根據量子物理學中的《哥本哈根詮釋》,任一特定電子的確實位置是不會知道的(軌域及軌跡放到一旁不計),直至偵測活動進行使電子被偵測到。在空間中,該測量將會檢測的電子在某一特定點的概率,和在這一點上的波函數的絕對值的平方成正比。 電子能夠由發射或吸收一個量子的能量從一個能級跃迁到另一個能級,其形式是一個光子。由於泡利不相容原理,沒有兩個以上的電子可以存在於某個原子軌域(軌域不等於電子層);因此,一個電子只可跨越到另有空缺位置的軌域。 知道不同的原子的電子構型有助了解元素週期表中的元素的結構。這個概念也有用於描述約束原子的多個化學鍵。在散裝物料的研究中這一理念可以說明激光器和半導體的奇特性能。.

氟和电子排布 · 电子排布和碱金属 · 查看更多 »

电离能

電離能(Ionization energy),或稱游離能、電離焓,常簡記為EI,指的是將一個電子自一個孤立的原子、離子或分子移至無限遠處所需的能量。更廣義的用法,第一电离能定义为气态原子失去一个电子成为一价气态正离子所需的最低能量,记作I1;气态一价正离子失去一个电子成为气态二价正离子所需的能量称为第二电离能,记作I2。依此类推。 电离能的数值和原子的有效核电荷密切相关,也和原子大小、原子轨道中电子间的推斥作用等因素有关。 电离能是了解原子性质的重要数据。.

氟和电离能 · 电离能和碱金属 · 查看更多 »

电解

电解是指将電流通过电解质溶液或熔融态物质,而在阴極和阳极上引起氧化还原反应的过程。电化学电池在接受外加电压(即充电過程)时,會发生电解过程。所有離子化合物都是電解質,因為它們溶在液體中時,離子可以自由移動,所以可導電。.

氟和电解 · 电解和碱金属 · 查看更多 »

电解质

电解质()是指在水溶液或熔融状态可以产生自由离子而导电的化合物。通常指在溶液中导电的物质,但熔融态及固态下导电的电解质也存在。这包括大多数可溶性盐、酸和碱。一些气体,例如氯化氢,在高温或低压的条件下也可以作为电解质。电解质通常分为强电解质和弱电解质。.

氟和电解质 · 电解质和碱金属 · 查看更多 »

电负性

电负性(electron negativity,簡寫EN),也譯作離子性、負電性及陰電性,是综合考虑了电离能和电子亲合能,首先由莱纳斯·鲍林于1932年提出。它以一组数值的相对大小表示元素原子在分子中对成键电子的吸引能力,称为相对电负性,简称电负性。元素电负性数值越大,原子在形成化学键时对成键电子的吸引力越强。.

氟和电负性 · 电负性和碱金属 · 查看更多 »

过氧化物

过氧化物,指一类含有过氧基-O-O-的化合物,具有强氧化性,又可分為有機過氧化物與無機過氧化物。在包含过氧基的化合物中,每个氧原子的氧化数为 -1。1798年德国科学家亚历山大·冯·洪堡(Alexander von Humboldt)即製造出过氧化钡。1818年泰纳尔合成过氧化氢,即今日我們最常見的雙氧水。.

氟和过氧化物 · 碱金属和过氧化物 · 查看更多 »

鈾(Uranium)是一種銀白色金屬化學元素,屬於元素週期表中的錒系,化學符號為U,原子序為92。每個鈾原子有92個質子和92個電子,其中6個為價電子。鈾具有微放射性,其同位素都不稳定,并以鈾-238(146個中子)和鈾-235(143個中子)最为常见。鈾在天然放射性核素中原子量第二高,仅次于钚。其密度比鉛高出大約70%,比金和鎢低。天然的泥土、岩石和水中含有百萬分之一至百萬分之十左右的鈾。採礦工業從瀝青鈾礦等礦物中提取出鈾元素。 自然界中的鈾以三种同位素的形式存在:鈾-238(99.2739至99.2752%)、鈾-235(0.7198至0.7202%)、和微量的鈾-234(0.0050至0.0059%)。鈾在衰變的時候釋放出α粒子。鈾-238的半衰期為44.7億年,鈾-235的則為7.04億年,因此它们被用于估算地球的年齡。 鈾獨特的核子特性有很大的實用價值。鈾-235是唯一自发裂變的同位素。鈾-238在快速中子撞擊下能夠裂變,屬於增殖性材料,即能在核反應爐中經核嬗變成為可裂變的鈈-239。鈾-233也是一種用於核科技的可裂變同位素,可從自然釷元素製成。鈾-238自發裂變的機率极低,快中子撞擊可诱导其裂變;鈾-235和233可被慢中子撞击而裂变,如果其质量超过临界质量,就都能夠維持核連鎖反應,在核反应过程中的微小质量损失会转化成巨大的能量。这一特性使它们可用于生产核裂变武器与核能发电。耗尽后的鈾-235发电原料被称为貧鈾(含238U),可用做钢材添加剂,製造贫铀弹和裝甲。.

氟和鈾 · 碱金属和鈾 · 查看更多 »

铁是一种化学元素,它的化学符号是Fe,它的原子序数是26,它的相对原子质量是56。它是过渡金属的一种。铁是最常用的金属,是地球外核及內核的主要成份,是地殼上豐度第四高的元素和第二高的金屬。鐵常出現在类地行星中,因為鐵是高質量恆星核融合後的產物,鎳-56是放熱核融合反應的最後一個產物,之後會衰變成最常見的鐵同位素。 铁和其他8族元素相同,其氧化態範圍很廣,由−2到+6,但其中+2和+3是最常見的氧化態。在流星体及低氧的環境下,鐵會以单质的形式存在,但是鐵很容易和氧氣和水反應。鐵的表面是有光澤的銀灰色,但在空氣中鐵會反應生成水合的氧化鐵,一般稱為铁锈。許多金屬在氧化後會形成钝化的氧化層,保護內部的金屬不被氧化,但氧化鐵的密度較鐵要低,因此氧化鐵會剝落,無法保護內部的鐵不受腐蝕。.

氟和铁 · 碱金属和铁 · 查看更多 »

铝(Aluminium 或Aluminum)是一种化学元素,属于硼族元素,其化学符号是Al,原子序数是13。相对密度是2.70。铝是一种较软的易延展的银白色金属。铝是地壳中第三大丰度的元素(仅次于氧和硅),也是丰度最大的金属,在地球的固体表面中占约8%的质量。铝金属在化学上很活跃,因此除非在极其特殊的氧化还原环境下,一般很难找到游离态的金属铝。被发现的含铝的矿物超过270种。最主要的含铝矿石是铝土矿。 铝因其低密度以及耐腐蚀(由于钝化现象)而受到重视。利用铝及其合金制造的结构件不仅在航空航太工业中非常关键,在交通和结构材料领域也非常重要。最有用的铝化合物是它的氧化物和硫酸盐。 尽管铝在环境中广泛存在,但没有一种已知生命形式需要铝元素。.

氟和铝 · 碱金属和铝 · 查看更多 »

脂肪酸

脂肪酸(Fatty acid)是一类羧酸化合物,由碳氫组成的烃类基团连结-zh-hant:羧基;zh-hans:羧酸;-所構成。 三个长链脂肪酸与甘油形成三酸甘油酯(Triacylglycerols),為脂肪的主要成分,歸於脂類。.

氟和脂肪酸 · 碱金属和脂肪酸 · 查看更多 »

是一種化學元素,化學符號為Ni,原子序數為28。它是一種有光澤的銀白色金屬,其銀白色帶一點淡金色。鎳屬於過渡金屬,質硬,具延展性。純鎳的化學活性相當高,這種活性可以在反應表面積最大化的粉末狀態下看到,但大塊的鎳金屬與周圍的空氣反應緩慢,因為其表面已形成了一層帶保護性質的氧化物。即使如此,由於鎳與氧之間的活性夠高,所以在地球表面還是很難找到自然的金屬鎳。地球表面的自然鎳都被封在較大的鎳鐵隕石裏面,這是因為隕石在太空的時候接觸不到氧氣的緣故。在地球上,這種自然鎳總會和鐵結合在一起,這點反映出它們都是超新星核合成主要的最終產物。一般認為地球的地核就是由鎳鐵混合物所組成的。 鎳的使用(天然的隕鎳鐵合金)最早可追溯至公元前3500年。阿克塞尔·弗雷德里克·克龙斯泰特於1751年最早分離出鎳,並將它界定為化學元素,儘管他最初把鎳礦石誤認為銅的礦物。鎳的外語名字來自德國礦工傳說中同名的淘氣妖精(Nickel,與英語中魔鬼別稱"Old Nick"相近),這是由於鎳銅礦不能用煉銅的方法煉出銅來,所以被比擬成妖魔。鎳最經濟的主要來源為鐵礦石褐鐵礦,含鎳量一般為1-2%。鎳的其他重要礦物包括硅鎂鎳礦及鎳黃鐵礦。鎳的主要生產地包括加拿大的索德柏立區(一般認為該處是隕石撞擊坑)、太平洋的新喀里多尼亞及俄羅斯的諾里爾斯克。 由於鎳在室溫時的氧化緩慢,所以一般視為具有耐腐蝕性。歷史上,因為這一點鎳被用作電鍍各種表面,例如金屬(如鐵及黃銅)、化學裝置內部及某些需要保持閃亮銀光的合金(例如鎳銀)。世界鎳生產量中的約6%仍被用於抗腐蝕純鎳電鍍。鎳曾經是硬幣的常見成份,但現時這方面已大致上被較便宜的鐵所取代,尤其是因為有些人的皮膚對鎳過敏。儘管如此,英國還是在皮膚科醫生的反對下,於2012年開始再使用鎳鑄造錢幣。 只有四種元素在室溫時具有鐵磁性,鎳就是其中一種。含鎳的鋁鎳鈷合金永久磁鐵,其磁力強度介乎於含鐵的永久磁鐵與稀土磁鐵之間。鎳在現代世界的的地位主要來自於它的各種合金。全世界鎳產量中的約60%被用於生產各種鎳鋼(特別是不鏽鋼)。其他常見的合金,還有一些的新的高溫合金,就幾乎就佔盡了餘下的世界鎳用量。用於製作化合物的化學用途只佔了鎳產量的不到3%。作為化合物,鎳在化學製造有好幾種特定的用途,例如作為氫化反應的催化劑。某些微生物和植物的酶用鎳作為活性位點,因此鎳是它們重要的養分。.

氟和镍 · 碱金属和镍 · 查看更多 »

IUPAC

#重定向 國際純化學和應用化學聯合會.

IUPAC和氟 · IUPAC和碱金属 · 查看更多 »

标准状况

标准状况(standard temperature and pressure, STP,标准温度与标准压力),简称「标况」。由於地表各處的溫度、壓力皆不同,即使是同一地點的溫度壓强也隨測量時間不同而相異,因此為研究方便,制定出描述物質特徵的標準狀況:.

标准状况和氟 · 标准状况和碱金属 · 查看更多 »

氡是化學元素,符號為Rn,原子序為86,屬於稀有氣體,無色、無臭、無味,具放射性,是鐳自然衰變後的間接產物,最穩定同位素為222Rn,半衰期為3.8天。在常規條件下,氡是密度最高的氣體物質之一。它同時也是唯一一種常規條件下只含放射性同位素的氣體,其輻射可以對健康造成損害。由於其放射性很強,所以針對氡的化學研究較為困難,已知化合物也很少。 釷和鈾在地球形成時已經存在。在它們緩慢衰變為鉛的過程中,氡會作為衰變鏈的一部份自然產生。釷和鈾的自然同位素半衰期都長達數十億年,因此這兩種元素連同鐳、氡等衰變產物,在今後幾千萬年後的豐度仍將和今天的程度相近。, Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, In collaboration with U.S. Environmental Protection Agency, December 1990.

氟和氡 · 氡和碱金属 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

氟和氢 · 氢和碱金属 · 查看更多 »

氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.

氟和氦 · 氦和碱金属 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

氟和氧 · 氧和碱金属 · 查看更多 »

氧化态

氧化态(英文:Oxidation State)表示一个化合物中某个原子的氧化程度。形式氧化态是通过假设所有异核化学键都为100%离子键而算出来的。氧化态用阿拉伯数字表示,可以为正数、负数或是零。 氧化态的升高称为氧化,降低则称为还原。这两个过程涉及电子的形式转移,即总体上看,还原是获得电子的过程,而氧化是失去电子的过程。 IUPAC对氧化态的定义为: “氧化态:一种化学物质中某个原子氧化程度的量度。根据以下公认的规则可计算该原子的电荷:.

氟和氧化态 · 氧化态和碱金属 · 查看更多 »

氨(Ammonia,或称氨氣、阿摩尼亞或無水氨,分子式为NH3)是无色气体,有强烈的刺激气味,极易溶于水。常温常压下,1單位体积水可溶解700倍体积的氨。氨對地球上的生物相當重要,是所有食物和肥料的重要成分。氨也是很多藥物和商業清潔用品直接或间接的組成部分,具有腐蝕性等危險性质。 由於氨有廣泛的用途,成為世界上產量最多的無機化合物之一,約八成用於製作化肥。2006年,氨的全球產量估計為1.465億吨,主要用於製造商業清潔產品。 氨可以提供孤電子對,所以也是路易斯鹼。.

氟和氨 · 氨和碱金属 · 查看更多 »

氪是一种化学元素,化学符号是Kr,原子序数是36,是一种无色、无臭、无味的惰性气体,把它放电时呈橙红色,在大气中含有痕量,可通过分馏从液态空气中分离,常用于制作荧光灯。氪正如其他惰性气体一样,不易与其他物质产生化学作用,已知的化合物有二氟化氪(KrF2)。 正如其他惰性气体,氪可用于照明和摄影。氪发出的光有大量谱线,并大量以等离子体的形态释出,这使氪成为制造高功率气体激光器的重要材料,另外也有特制的氟化氪激光。氪放电管功率高、操作容易,因此在1960年至1983年间,一米的定义是用氪86發出的橙色谱线作为基准的。.

氟和氪 · 氪和碱金属 · 查看更多 »

氯是一种卤族化学元素,化学符号為Cl,原子序数為17。.

氟和氯 · 氯和碱金属 · 查看更多 »

氖(舊譯作氝,訛作氞)是一种化学元素,它的化学符号是Ne,它的原子序数是10,是一种无色的稀有气体,把它放电时呈橙红色。氖最常用在霓红灯之中。空气中含有少量氖。.

氖和氟 · 氖和碱金属 · 查看更多 »

氙(注音:ㄒㄧㄢ,漢語拼音:xiān;舊譯作氠、氥、𣱧)是一種化學元素,化學符號為Xe,原子序為54。氙是一種無色、無味的稀有氣體。地球大氣層中含有痕量的氙。 雖然氙的化學活性很低,但是它仍然能夠進行化學反應,例如形成六氟合鉑酸氙──首個被合成的稀有氣體化合物。 自然產生的氙由8種穩定同位素組成。氙還有40多種能夠進行放射性衰變的不穩定同位素。氙同位素的相對比例對研究太陽系早期歷史有重要的作用。具放射性的氙-135是核反應爐中最重要的中子吸收劑,可通過碘-135的核衰变產生。 氙可用在閃光燈和弧燈中,或作全身麻醉藥。最早的准分子激光設計以氙的二聚體分子(Xe2)作為激光介質,而早期激光設計亦用氙閃光燈作激光抽運。氙還可以用來尋找大質量弱相互作用粒子,或作航天器離子推力器的推進劑。.

氙和氟 · 氙和碱金属 · 查看更多 »

溶解性

溶解性或溶解度()是指定溫、定壓時,每單位飽和溶液中所含溶質的量;也就是一种物质能够被溶解的最大程度或飽和溶液的濃度。通常用體積莫耳濃度、質量百分濃度或「每100公克溶劑能溶解的溶質重」表示之。溶解度主要取决于溶质在溶劑中的溶解平衡常数(溶度積)、溫度、極性、和-zh-hans:压强; zh-hk:壓強; zh-tw:壓力-。相同溶質在不同溶劑下的溶解度不盡相同;相同溶劑在不同溶質下的溶解度不盡相同;即便是相同的溶質和溶液,在不同的環境因素下溶解度也不盡相同。 當溶質分子進入溶液時,因為分子可以自由移動,有些分子會碰撞到未溶解的晶體表面,並被吸引回到晶體表面析出,此即為結晶或沉澱。在分子不斷溶解和結晶的過程中,當溶解速率和結晶速率相等時,稱為溶解平衡。達到溶解平衡的溶液稱為飽和溶液,此時溶質的濃度定義為溶解度。濃度低於溶解度的溶液稱為未飽和溶液;在某些特殊環境下,會產生濃度大於溶解度的溶液,稱為'''過飽和溶液'''。 如果一种溶质對溶液的溶解度很高,我们就说这种物质是可溶的;如果溶解度不高,称这种物质是微溶的;如果溶解度極低,则称这种物质是不溶或难溶的。在台灣,可溶、微溶、難溶這三種狀態分別以體積莫耳濃度10^M和10^M做為分野。在中國大陸,將每100mL溶剂中溶质的溶解度小于0.01g的物质称为难溶物质,在0.01~1克之间的为微溶,1~10克为可溶,10克以上为易溶。.

氟和溶解性 · 溶解性和碱金属 · 查看更多 »

有效核电荷

有效核电荷是指在多电子原子中,某一个电子所受的净正电荷。这个概念是基于屏蔽作用理论而存在:由于共同带有负电荷的内外层电子之间存在排斥力,内层电子“阻挡”了一部分外层电子与原子核之间的正负电荷吸引力。应用这个概念,可以直接根据原子的氧化值判断核电荷的强度。 在单电子原子中,电子受到原子核中全部正电荷的吸引(即屏蔽作用不存在)。这种情况下,有效核电荷可以直接应用库仑定律计算。然而,在多电子原子中,处于外层的电子既受到正电荷的吸引,同时也被处于内层带负电荷的电子排斥。此时,其中一个电子所受的有效核电荷可以用以下公式求得: 其中 S 可以通过许多方法求得,其中最简单的一种被称作“斯莱特定则”(以化学家约翰·C·斯莱特命名)。 另外,道格拉斯·哈特里将哈特里-福克轨道的有效核电荷定义为: 其中 H 是氢原子的平均半径,而 Z 是带有Z个核电荷的原子中、所研究的轨道的平均半径。 备注: Zeff 也常被记作 Z*.

有效核电荷和氟 · 有效核电荷和碱金属 · 查看更多 »

放射性同位素

放射性同位素(radionuclide,或radioactive nuclide),一種具有放射性的核素。是一種原子核不穩定的原子,每個原子也有很多同位素,每組同位素的原子序雖然是相同,但是卻有著不同的原子量,如果這原子是有放射性的話,它會被稱為物理放射性核種或放射性同位素。放射性同位素會進行放射性衰變,從而放射出伽瑪射線,和次原子粒子。 化學家和生物學家都把放射性同位素的技術應用在我們的食品、水和身體健康等事項上。不過他們也察覺到危險性,因而制訂使用的安全守則。有些放射性同位素是天然存在的,有些則是人工製造的,稱為人造放射性同位素。.

放射性同位素和氟 · 放射性同位素和碱金属 · 查看更多 »

上面的列表回答下列问题

氟和碱金属之间的比较

氟有249个关系,而碱金属有335个。由于它们的共同之处46,杰卡德指数为7.88% = 46 / (249 + 335)。

参考

本文介绍氟和碱金属之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »