我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

正則座標和辛標記

快捷方式: 差异相似杰卡德相似系数参考

正則座標和辛標記之间的区别

正則座標 vs. 辛標記

在古典力學裏,正則座標是相空間的一種座標。正則座標很自然的出現於哈密頓力學的研究。正如同哈密頓力學的被辛幾何廣義化,正則變換也被切觸變換廣義化。如此在古典力學裏,正則座標的19世紀定義也被廣義化,成為更抽象地以餘切叢為基礎的20世紀定義。 這篇文章解釋在古典力學裏的正則座標。在量子力學裏,也有一個密切相關的概念;欲知細節,請參閱與正則對易關係。. 在哈密頓力學裏,因為哈密頓方程式對於廣義坐標 \mathbf\,\! 與廣義動量 \mathbf\,\! 的運算在正負號上並不對稱,必須用兩個方程式來表示: 這裏, \mathcal\,\! 是哈密頓量。 辛標記提供了一種既簡單,又有效率的標記方法來展示方程式及數學運算。辛標記的英文名 「Symplectic notation」 最先是德國著名數學家赫尔曼·外尔提出的。 Symplectic 這字原來在希臘文是糾纏或編結的意思;用在這裏主要是形容廣義坐標和廣義動量互相編結在一起的情況。 設定一個 2N\times 1\,\! 的豎矩陣 \boldsymbol\,\!: 此矩陣上半段是廣義坐標、下半段是廣義動量、T\,\! 代表轉置運算。我們也可以將 \boldsymbol\,\! 視為一個向量。 定義辛矩陣 \boldsymbol\,\! 為一個斜對稱的 2N\times 2N\,\! 方塊矩陣: 這裏,\boldsymbol\,\! 是由 4 個 N\times N\,\! 零矩陣\mathbf與單位矩陣\mathbf組成。 這樣,哈密頓方程式可以簡易的表.

之间正則座標和辛標記相似

正則座標和辛標記有(在联盟百科)6共同点: 廣義動量哈密顿力学相空間辛矩陣正則變換泊松括號

廣義動量

拉格朗日力學與哈密頓力學時常涉及廣義動量。這是因為採用廣義坐標有許多優點。而廣義動量是正則共軛於廣義坐標的物理量,又稱為共軛動量。 假設一個物理系統的廣義坐標是 (q_1,\ q_2,\ q_3,\ \dots,\ q_N)\,\! ,則廣義速度為 (\dot_1,\ \dot_2,\ \dot_3,\ \dots,\ \dot_N)\,\! 。表示廣義動量為 (p_1,\ p_2,\ p_3,\ \dots,\ p_N)\,\! 。定義廣義動量為拉格朗日量 \mathcal\,\! 隨廣義速度的導數:.

廣義動量和正則座標 · 廣義動量和辛標記 · 查看更多 »

哈密顿力学

哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。关于这点请参看其数学表述。 适合用哈密顿力学表述的动力系统称为哈密顿系统。.

哈密顿力学和正則座標 · 哈密顿力学和辛標記 · 查看更多 »

相空間

在數學與物理學中,相空間是一個用以表示出一系統所有可能狀態的空間;系統每個可能的狀態都有一相對應的相空間的點。.

正則座標和相空間 · 相空間和辛標記 · 查看更多 »

辛矩陣

在數學中,辛矩阵是指一個2n \times 2n的矩阵M(通常佈於實數或複數域上),使之滿足 其中M^T表M的轉置矩陣,而\Omega是一個固定的可逆斜對稱矩陣;這類矩陣在適當的變化後皆能表為 \begin 0 & I_n \\ -I_n & 0 \\ \end 或 \begin0 & 1\\ -1 & 0\end & & 0 \\ 0 & & \begin0 & 1 \\ -1 & 0\end \end 兩者的差異僅在於基的置換,其中I_n是n \times n 單位矩陣。此外,\Omega 行列式值等於一,且其逆矩陣等於-\Omega。.

正則座標和辛矩陣 · 辛標記和辛矩陣 · 查看更多 »

正則變換

在哈密頓力學裏,正則變換(canonical transformation)是一種正則坐標的改變,(\mathbf,\ \mathbf) \rightarrow (\mathbf,\ \mathbf),而同時維持哈密頓方程的形式,雖然哈密頓量可能會改變。正則變換是哈密頓-亞可比方程式與刘维尔定理的基礎。.

正則座標和正則變換 · 正則變換和辛標記 · 查看更多 »

泊松括號

在數學及经典力學中,泊松括號是哈密顿力學中重要的運算,在哈密頓表述的動力系統中時間演化的定義起着中心角色。在更一般的情形,泊松括号用来定义一个泊松代数,而泊松流形是一个特例。它们都是以西莫恩·德尼·泊松命名的。.

正則座標和泊松括號 · 泊松括號和辛標記 · 查看更多 »

上面的列表回答下列问题

正則座標和辛標記之间的比较

正則座標有15个关系,而辛標記有18个。由于它们的共同之处6,杰卡德指数为18.18% = 6 / (15 + 18)。

参考

本文介绍正則座標和辛標記之间的关系。要访问该信息提取每篇文章,请访问: