徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

核武器和核裂变

快捷方式: 差异相似杰卡德相似系数参考

核武器和核裂变之间的区别

核武器 vs. 核裂变

--,也叫--或原子武器,簡稱核武,是利用核反应的光热辐射、電磁脈衝、冲击波和感生放射性造成杀伤和破坏作用,以及造成大面积放射性污染,来阻止对方军事行动以达到战略目的的大杀伤力武器。主要包括核分裂武器(第一代核武,通常稱為原子弹)和核融合武器(亦稱為氫彈,分为两級及三級式)。亦有些还在武器内部放入具有感生放射的轻元素,以增大辐射强度扩大污染,或加強中子放射以殺傷人員(如中子弹)。 除此以外,核武器還可以根據用途而細分為戰略核武器及戰術核武器,前者是一般意義上的核武器範疇,為大當量的核武器和遠射程,後者則屬於小當量和近射程。其中,後者可用於戰爭前線。戰術核武器的概念以及發展相對戰略核武器為遲緩,是在第二次世界大战以後多年才逐步形成的,而戰術核武器需要對核能技術的要求亦較高以及複雜,其前提是要擁有戰略核武器。 有紀錄的核武器的研發始於第二次世界大戰前夕,由納粹德國率先提出方案,美國方面的計畫則晚了數個月。但由於當時錯誤的實驗方向與發展,令希特勒認為開發核武器的費用將會過於龐大,加上原先德國有興趣的是核子反應所能提供的能源而並非核武,因此放棄開發核武器。 當1945年納粹德國投降後,大量的德國科學家分散至各國持續研究,進一步幫助了西方國家與蘇聯在核能方面的技術發展。. 核裂变(;),--,是指由較重的(原子序数較大的)原子,主要是指鈾或鈽,分裂成较輕的(原子序数较小的)原子的一種核反應或放射性衰變形式。核裂变是由莉澤·邁特納、奥托·哈恩及奥托·罗伯特·弗里施等科學家在1938年發現。原子彈以及核电站的能量来源都是核裂变。早期原子彈應用鈽-239為原料製成。而鈾-235裂變在核電廠最常見。 重核原子經中子撞擊後,分裂成為兩個較輕的原子,同時釋放出數個中子,並且以伽马射线的方式釋放光子。釋放出的中子再去撞擊其它的重核原子,從而形成鏈式反應而自發分裂。原子核分裂時除放出中子還會放出熱,核電廠用以發電的能量即來源於此。因此核裂变產物的結合能需大於反應物的的結合能。 核裂变會將化學元素變成另一種化學元素,因此核裂变也是核遷變的一種。所形成的二個原子質量會有些差異,以常見的可裂变物质同位素而言,形成二個原子的質量比約為3:2。大部份的核裂变會形成二個原子,偶爾會有形成三個原子的核裂变,稱為,大約每一千次會出現二至四次,其中形成的最小產物大小介於質子和氬原子核之間。 現代的核裂变多半是刻意產生,由中子撞擊引發的人造核反應,偶爾會有自發性的,因放射性衰變產生的核裂变,後者不需要中子的引發,特別會出現在一些質量數非常高的同位素,其產物的組成有相當的機率性甚至混沌性,和质子发射、α衰變、等單純由量子穿隧產生的裂变不同,後面這些裂变每次都會產生相同的產物。原子彈以及核电站的能量来源都是核裂变。核燃料是指一物質當中子撞擊引發核裂变時也會釋放中子,因此可以產生鏈式反應,使核裂变持續進行。在核电站中,其能量產生速率控制在一個較小的速率,而在原子彈中能量以非常快速不受控制的方式釋放。 由於每次核分裂釋放出的中子數量大於一個,因此若對鏈式反應不加以控制,同時發生的核分裂數目將在極短時間內以幾何級数形式增長。若聚集在一起的重核原子足夠多,將會瞬間釋放大量的能量。原子彈便應用了核分裂的這種特性。製成原子彈所使用的重核含量,需要在90%以上。 核能發電應用中所使用的核燃料,鈾-235的含量通常很低,大約在3%到5%,因此不會產生核爆。但核電廠仍需要對反應爐中的中子數量加以控制,以防止功率過高造成爐心熔毀的事故。通常會在反應爐的慢化劑中添加硼,並使用控制棒吸收燃料棒中的中子以控制核分裂速度。從鎘以後的所有元素都能分裂。 核分裂時,大部分的分裂中子均是一分裂就立即釋出,稱為瞬發中子,少部分則在之後(一至數十秒)才釋出,稱為延遲中子。.

之间核武器和核裂变相似

核武器和核裂变有(在联盟百科)17共同点: 原子弹小男孩原子彈中子三硝基甲苯廣島伽马射线快中子增殖反应堆电子臨界質量長崎核聚变核連鎖反應核武器放射性曼哈顿计划

原子弹

原子弹又称裂变弹(Atomic bomb),是一种利用核原理制成的核武器。由美国最先研制成功,具有极强的破坏力,在爆炸的同时会放出强烈的核辐射,危害生物和非生物组织。第一个裂变(原子弹)试爆释放出的能量为约20,000吨TNT(见三位一体核试爆)的相同的当量。第一个热核(氢弹)试爆释放相同的能量为10,000,000吨TNT的当量。.

原子弹和核武器 · 原子弹和核裂变 · 查看更多 »

小男孩原子彈

小男孩(Little Boy)是第二次世界大戰時美國在日本廣島市投擲的首枚原子彈的代號。於1945年8月6日由保羅·提貝茲駕駛的B-29超級空中堡壘轟炸機「艾諾拉·蓋」在廣島相生橋上空投下,日本標準時間早上8時15分在高度爆炸。.

小男孩原子彈和核武器 · 小男孩原子彈和核裂变 · 查看更多 »

中子

| magnetic_moment.

中子和核武器 · 中子和核裂变 · 查看更多 »

三硝基甲苯

2,4,6-三硝基甲苯(英文:Trinitrotoluene,縮寫:TNT)常见炸藥之一,至今仍大量应用在军事和工业领域上。它的IUPAC命名是2-甲基-1,3,5-三硝基苯(2-methyl-1,3,5-trinitrobenzene),由甲苯经过硝化製成,熔點為354 K(80.9°C)。由于呈黄色晶體狀,所以與苦味酸一同被俗稱為「黃色炸藥」。和硝酸銨可成為阿馬托炸藥。 與硝化甘油不同,精煉的三硝基甲苯對於摩擦、震動都十分稳定。即使被枪击,也不易爆炸。它需要雷管引爆。TNT不會與金屬起化學作用或者吸收水份。因此它可以存放多年。但它與鹼強烈反應,生成不穩定的化合物。 TNT爆炸反應式:2C7H5N3O6 → 12CO + 5H2 + 3N2 + 2C 每公斤TNT炸藥可產生4200千焦的能量。虽然三硝基甲苯的能量密度比脂肪(38MJ/kg)和糖(17MJ/kg)小,但它的分子中有三个硝基作为氧化剂,不需要大氣中的氧氣,所以引爆时会产生大量气体,产生爆炸。現今有關爆炸和能量釋放的研究,也常常用「公斤黃色炸藥」或「噸黃色炸藥」作為單位,以比較爆炸、地震、行星撞擊等大型反應時所釋出的能量。.

三硝基甲苯和核武器 · 三硝基甲苯和核裂变 · 查看更多 »

廣島

廣島可指:.

廣島和核武器 · 廣島和核裂变 · 查看更多 »

伽马射线

伽瑪射線(Gamma ray),或γ射線是原子衰變裂解時放出的射線之一。此種電磁波波長在0.01奈米以下,穿透力很強,又攜帶高能量,容易造成生物體細胞內的脫氧核糖核酸(DNA)斷裂進而引起細胞突變,因此也可以作醫療之用。 1900年由法國科學家P.V.維拉德(Paul Ulrich Villard)發現,他將含鐳的氯化鋇通過陰極射線,從照片記錄上看到輻射穿過0.2毫米的鉛箔,拉塞福稱這一貫穿力非常強的輻射為γ射線,是繼α射線、β射線後發現的第三種原子核射線。1913年,γ射線被證實為是電磁波,波長短于0.2 埃,和X射線特性相似但具有比X射線還要強的穿透能力。γ射線通過物質並與原子相互作用時會產生光電效應、康普頓效應和正負電子對效應。γ射线即使使用较厚材料阻挡一般也仍然有部分射线泄漏,所以通常只能用半吸收厚度来定量材料的阻隔效果。半吸收厚度是指入射射线强度减弱到一半时阻隔物体的厚度。半吸收厚度其数值d(1/2).

伽马射线和核武器 · 伽马射线和核裂变 · 查看更多 »

快中子增殖反应堆

快中子增殖反應堆(Fast breeder reactor),或稱快中子滋生反應堆、快滋生反應堆、快堆等,是一種核子反應器,核燃料和一顆快中子在核分裂後產生更多的中子,且利用增殖性材料吸收快中子後形成可裂变物质,產生的燃料多於消耗的燃料。另外也有利用熱中子進行滋生反應的「熱滋生反應器」。.

快中子增殖反应堆和核武器 · 快中子增殖反应堆和核裂变 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

核武器和电子 · 核裂变和电子 · 查看更多 »

鈾(Uranium)是一種銀白色金屬化學元素,屬於元素週期表中的錒系,化學符號為U,原子序為92。每個鈾原子有92個質子和92個電子,其中6個為價電子。鈾具有微放射性,其同位素都不稳定,并以鈾-238(146個中子)和鈾-235(143個中子)最为常见。鈾在天然放射性核素中原子量第二高,仅次于钚。其密度比鉛高出大約70%,比金和鎢低。天然的泥土、岩石和水中含有百萬分之一至百萬分之十左右的鈾。採礦工業從瀝青鈾礦等礦物中提取出鈾元素。 自然界中的鈾以三种同位素的形式存在:鈾-238(99.2739至99.2752%)、鈾-235(0.7198至0.7202%)、和微量的鈾-234(0.0050至0.0059%)。鈾在衰變的時候釋放出α粒子。鈾-238的半衰期為44.7億年,鈾-235的則為7.04億年,因此它们被用于估算地球的年齡。 鈾獨特的核子特性有很大的實用價值。鈾-235是唯一自发裂變的同位素。鈾-238在快速中子撞擊下能夠裂變,屬於增殖性材料,即能在核反應爐中經核嬗變成為可裂變的鈈-239。鈾-233也是一種用於核科技的可裂變同位素,可從自然釷元素製成。鈾-238自發裂變的機率极低,快中子撞擊可诱导其裂變;鈾-235和233可被慢中子撞击而裂变,如果其质量超过临界质量,就都能夠維持核連鎖反應,在核反应过程中的微小质量损失会转化成巨大的能量。这一特性使它们可用于生产核裂变武器与核能发电。耗尽后的鈾-235发电原料被称为貧鈾(含238U),可用做钢材添加剂,製造贫铀弹和裝甲。.

核武器和鈾 · 核裂变和鈾 · 查看更多 »

鈽(Plutonium,--)是原子序数94、元素符號為Pu的放射性超鈾元素。它屬於錒系金屬,外表呈銀白色,接觸空氣後容易腐蝕、氧化,在表面生成無光澤的二氧化鈽。鈽有六种同素異形體和四種氧化態,易和碳、鹵素、氮、矽起化學反應。鈽暴露在潮濕的空氣中時會產生氧化物和氫化物,其體積最大可膨脹70%,屑狀的钚能自燃。它也是一种放射性毒物,会於骨髓中富集。因此,操作、處理鈽元素具有一定的危險性。 鈽是天然存在於自然界中質量最重的原子。它最穩定的同位素是鈽-244,半衰期約為八千萬年,足夠使鈽以微量存在於自然環境中。 鈽最重要的同位素是鈽-239,半衰期為2.41萬年,常被用來製造核子武器。鈽-239和鈽-241都易于裂變,即它們的原子核可以在慢速熱中子撞擊下產生核分裂,釋出能量、伽馬射線以及中子輻射,從而形成核連鎖反應,並應用在核武器與核反應爐上。 鈽-238的半衰期為88年,並放出α粒子。它是放射性同位素熱電機的熱量來源,常用於驅動太空船。 鈽-240自發裂變的比率很高,容易造成中子通量激增,因而影響了鈽作為核武及反應器燃料的適用性。 分離鈽同位素的過程成本極高又耗時費力,因此鈽的特定同位素時幾乎都是以特殊反應合成。 1940年,格倫·西奧多·西博格和埃德溫·麥克米倫首度在柏克萊加州大學實驗室,以氘撞擊鈾-238而合成鈽元素。麥克米倫將這個新元素取名Pluto(意為冥王星),西博格便開玩笑提議定其元素符號為Pu(音類似英語中表嫌惡時的口語「pew」)。科學家隨後在自然界中發現了微量的鈽。二次大戰時曼哈頓計劃則首度將製造微量鈽元素列為主要任務之一,曼哈頓計劃後來成功研製出第一個原子彈。1945年7月的第一次核試驗「三一试验」,以及第二次、投於長崎市的「胖子原子彈」,都使用了鈽製作內核部分。關於鈽元素的人體輻射實驗研究並在未經受試者同意之下進行,二次大戰期間及戰後都有數次核試驗相關意外,其中有的甚至造成傷亡。核能發電廠核廢料的清除,以及冷戰期間所打造的核武建設在核武裁減後的廢用,都延伸出日後核武擴散以及環境等問題。非陸上核試驗也會釋出殘餘的原子塵,現已依《部分禁止核試驗條約》明令禁止。.

核武器和钚 · 核裂变和钚 · 查看更多 »

臨界質量

臨界質量(Critical mass)是指維持核子連鎖反應所需的裂變材料質量。不同的可裂變材料,受核子的性質(如裂變橫切面)、物理性質、物料型狀、純度、是否被中子反射物料包圍、是否有中子吸收物料等等因素影響,而會有不同的臨界質量。 剛好可以產生連鎖反應的組合,稱為已達臨界點。比這樣更多質量的組合,核反應的速率會以指數增長,稱為超臨界。如果組合能夠在沒有延遲放出中子之下進行連鎖反應,這種臨界被稱為即發臨界,是超臨界的一種。即發臨界組合會產生核爆炸。如果組合比臨界點小,裂變會隨時間減少,稱之為次臨界。 恩里科·費米最先發現超臨界組合,不一定同時是超過即發臨界。他的發現開展了受控制的連鎖反應的研究,後來發展的核子反應堆及核能都是出於這一發現。.

核武器和臨界質量 · 核裂变和臨界質量 · 查看更多 »

長崎

长崎可能是指:.

核武器和長崎 · 核裂变和長崎 · 查看更多 »

核聚变

--,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。在此过程中,物质没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子(能量)。核聚变是给活跃的或“主序的”恆星提供能量的过程。 两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 舉個例子:两个質量小的原子,比方說兩個氚,在一定条件下(如超高温和高压),會发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放。 原子核中蕴藏巨大的能量。根据质能方程E.

核武器和核聚变 · 核聚变和核裂变 · 查看更多 »

核連鎖反應

核連鎖反應是當發生一個核反應,兩個或以上的周邊核反應被觸動,從而帶動其他核反應以指數形式增長。 在臨界質量的核裂變燃料發生的不受控核連鎖反應可釋放出巨大能量,也是核武的概念,而連鎖反應可通過控制,成為日常所需的能源。 唯一已知的自然核連鎖反應堆位於西非加彭共和國的奧克洛(Oklo),該處有一個長達20億年歷史的古老核反應堆。.

核武器和核連鎖反應 · 核裂变和核連鎖反應 · 查看更多 »

核武器

--,也叫--或原子武器,簡稱核武,是利用核反应的光热辐射、電磁脈衝、冲击波和感生放射性造成杀伤和破坏作用,以及造成大面积放射性污染,来阻止对方军事行动以达到战略目的的大杀伤力武器。主要包括核分裂武器(第一代核武,通常稱為原子弹)和核融合武器(亦稱為氫彈,分为两級及三級式)。亦有些还在武器内部放入具有感生放射的轻元素,以增大辐射强度扩大污染,或加強中子放射以殺傷人員(如中子弹)。 除此以外,核武器還可以根據用途而細分為戰略核武器及戰術核武器,前者是一般意義上的核武器範疇,為大當量的核武器和遠射程,後者則屬於小當量和近射程。其中,後者可用於戰爭前線。戰術核武器的概念以及發展相對戰略核武器為遲緩,是在第二次世界大战以後多年才逐步形成的,而戰術核武器需要對核能技術的要求亦較高以及複雜,其前提是要擁有戰略核武器。 有紀錄的核武器的研發始於第二次世界大戰前夕,由納粹德國率先提出方案,美國方面的計畫則晚了數個月。但由於當時錯誤的實驗方向與發展,令希特勒認為開發核武器的費用將會過於龐大,加上原先德國有興趣的是核子反應所能提供的能源而並非核武,因此放棄開發核武器。 當1945年納粹德國投降後,大量的德國科學家分散至各國持續研究,進一步幫助了西方國家與蘇聯在核能方面的技術發展。.

核武器和核武器 · 核武器和核裂变 · 查看更多 »

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

放射性和核武器 · 放射性和核裂变 · 查看更多 »

曼哈顿计划

曼哈顿计划(Manhattan Project)是第二次世界大戰期間研發與製造原子彈的一項大型軍事工程,由美國以及給予相關支援的英國與加拿大執行,該計划於1942年到1946年間直屬於美國陸軍工程兵團的莱斯利·理查德·格罗夫斯將軍領導,工程原名為「代用材料項目發展」(Development of Substitute Materials),後改為「曼哈頓工程區」(Manhattan District)。期間,美方也吸收了較早展開的英國核武器研發計畫——「合金管工程」之成果。曼哈顿计划早在1939年即秘密地展開,雇佣了超过13萬人员,花费了将近20億美金(相當於2014年260億美金),超过90%的費用用于建造工厂和制造核裂变的原材料,用于制造和发展武器的部份僅佔不到10%,此一工程在橫跨美國、英國和加拿大三國的30多個城市中均有進行。 戰爭期間,美軍研發出兩種類型的原子彈,一為設計上較簡單、使用鈾235製成的「」,由於鈾235在天然鈾中僅佔0.7%,其他絕大部分都是質量相同、難以分離的同位素鈾238,故美方以三種分離方式來提高其鈾-235的濃度——電磁(「」)、氣體(「氣體擴散法」)與熱(「索瑞特效應」),大部分工作都在田纳西州橡树岭一地進行。 1941年12月7日,日本偷袭美国珍珠港,美国对日宣战,自此开始,美国正式卷入二战。此时,纳粹德国已经开始了德國核武器開發計畫「铀计划」(Uranprojekt),目的是制造出核武器,运用在二战之中。一些美国科学家提出,要在纳粹德国之前研发出原子弹。 1942年12月2日,在费米的指导下,世界上第一个实验性原子反应堆在芝加哥建成,成功实现了可控的链式反应。1943年春,奥本海默领导科研人员开始制造原子弹的工作;翌年,美国橡树岭工厂生产出第一批浓缩铀原材料;1945年7月12日,第一颗实验性原子弹开始最后的装配。7月16日,美国的第一颗原子弹在新墨西哥州的沙漠中试爆成功,爆炸当量大约21,000吨TNT炸弹。8月6日,美国向广岛投放名为小男孩的原子弹;3日后(8月9日),向长崎投擲名为胖子的原子弹。8月15日,日本宣告无条件投降,第二次世界大战结束。.

曼哈顿计划和核武器 · 曼哈顿计划和核裂变 · 查看更多 »

上面的列表回答下列问题

核武器和核裂变之间的比较

核武器有157个关系,而核裂变有90个。由于它们的共同之处17,杰卡德指数为6.88% = 17 / (157 + 90)。

参考

本文介绍核武器和核裂变之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »