我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

有理数和集合 (数学)

快捷方式: 差异相似杰卡德相似系数参考

有理数和集合 (数学)之间的区别

有理数 vs. 集合 (数学)

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。. 集合(Set,或簡稱集)是基本的数学概念,它是集合论的研究对象,指具有某种特定性质的事物的总体,(在最原始的集合論─樸素集合論─中的定義,集合就是“一堆東西”。)集合裡的事物(“东西”),叫作元素。若然 x 是集合 A 的元素,記作 x ∈ A。 集合是现代数学中一个重要的基本概念,而集合论的基本理论是在十九世纪末被创立的。这里对被数学家们称为“直观的”或“朴素的”集合论进行一个简短而基本的介绍,另外可參见朴素集合论;關於对集合作公理化的理論,可见公理化集合论。.

之间有理数和集合 (数学)相似

有理数和集合 (数学)有(在联盟百科)3共同点: 子集数学整数

子集

子集,為某個集合中一部分的集合,故亦稱部分集合。 若A和B为集合,且A的所有元素都是B的元素,则有:.

子集和有理数 · 子集和集合 (数学) · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

数学和有理数 · 数学和集合 (数学) · 查看更多 »

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

整数和有理数 · 整数和集合 (数学) · 查看更多 »

上面的列表回答下列问题

有理数和集合 (数学)之间的比较

有理数有45个关系,而集合 (数学)有32个。由于它们的共同之处3,杰卡德指数为3.90% = 3 / (45 + 32)。

参考

本文介绍有理数和集合 (数学)之间的关系。要访问该信息提取每篇文章,请访问: