徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

晶体学和肌红蛋白

快捷方式: 差异相似杰卡德相似系数参考

晶体学和肌红蛋白之间的区别

晶体学 vs. 肌红蛋白

晶体学,又称结晶学,是一门以确定固体中原子(或离子)排列方式为目的的实验科学。“晶体学”(crystallography)一词原先仅指对各种晶体性质的研究,但随着人们对物质在微观尺度上认识的加深,其词义已大大扩充。 在X射线衍射晶体学提出之前(介绍见下文),人们对晶体的研究主要集中于晶体的点阵几何上,包括测量各晶面相对于理论参考坐标系(晶体坐标轴)的夹角,以及建立晶体点阵的对称关系等等。夹角的测量用测角仪完成。每个晶面在三维空间中的位置用它们在一个立体球面坐标“网”上的投影点(一般称为投影“极”)表示。坐标网的又根据不同取法分为Wolff网和Lambert网。将一个晶体的各个晶面对应的极点在坐标网上画出,并标出晶面相应的密勒指数,最终便可确定晶体的对称性关系。 现代晶体学研究主要通过分析晶体对各种电磁波束或粒子束的衍射图像来进行。辐射源除了最常用的X射线外,还包括电子束和中子束(根据德布罗意理论,这些基本粒子都具有波动性,参见条目波粒二象性),可以表现出和光波类似的性质)。晶体学家直接用辐射源的名字命名各种标定方法,如X射线衍射(常用英文缩写XRD),中子衍射和电子衍射。 以上三种辐射源与晶体学试样的作用方式有很大区别:X射线主要被原子(或离子)的最外层价电子所散射;电子由于带负电,会与包括原子核和核外电子在内的整个空间电荷分布场发生相互作用;中子不带电且质量较大,主要在与原子核发生碰撞时(碰撞的概率非常低)受到来自原子核的作用力;与此同时,由于中子自身的自旋磁矩不为零,它还会与原子(或离子)磁场相互作用。这三种不同的作用方式适应晶体学中不同方面的研究。. 肌红蛋白(Myoglobin)是由153个胺基酸环绕中央的血基质组成的单链蛋白质。分子量为16700道尔顿。其对氧气的亲合力大于血红蛋白,所以在肌肉组织中有儲存氧气的功能。因為只需要一點氧分壓便可以使其對氧氣的結合力達到飽和,所以比血红蛋白更適合儲存氧氣。血基质對一氧化碳的親和力比氧氣大20000倍,但是因為肌紅蛋白三級結構上His64(His E7)胺基酸不但可以與氧氣產生氫鍵還可以使一氧化碳偏離原來的結合時的自然狀態,在這一來一往的情形下,使得肌紅蛋白對一氧化碳的親和力只比氧氣高出200倍。由於不具有四級構造,所以不像血紅素一樣,產生協同效應。 若严重过度运动,有可能使肌细胞溶解并导致肌红蛋白进入血液,在肾脏堵住肾小管,引起肾损伤,称为横纹肌溶解症。肌细胞溶解还会释放出大量的钾,引起高钾血症。.

之间晶体学和肌红蛋白相似

晶体学和肌红蛋白有1共同点(的联盟百科): 蛋白质

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

晶体学和蛋白质 · 肌红蛋白和蛋白质 · 查看更多 »

上面的列表回答下列问题

晶体学和肌红蛋白之间的比较

晶体学有77个关系,而肌红蛋白有13个。由于它们的共同之处1,杰卡德指数为1.11% = 1 / (77 + 13)。

参考

本文介绍晶体学和肌红蛋白之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »