之间数理逻辑和阿尔弗雷德·塔斯基相似
数理逻辑和阿尔弗雷德·塔斯基有(在联盟百科)11共同点: 一阶逻辑,亚里士多德,伯特兰·罗素,元数学,阿隆佐·邱奇,逻辑,抽象代数,模型论,戈特洛布·弗雷格,数学,数学基础。
一阶逻辑
一阶逻辑是使用於数学、哲学、语言学及電腦科學中的一种形式系统。 過去一百多年,一階邏輯出現過許多種名稱,包括:一阶斷言演算、低階斷言演算、量化理論或斷言逻辑(一個較不精確的用詞)。一階邏輯和命題邏輯的不同之處在於,一階邏輯有使用量化變數。一個一階邏輯,若具有由一系列量化變數、一個以上有意義的斷言字母及包含了有意義的斷言字母的純公理所組成的特定論域,即是一個一階理論。 一階邏輯和其他高階邏輯不同之處在於,高階邏輯的斷言可以有斷言或函數當做引數,且允許斷言量詞或函數量詞的(同時或不同時)存在。在一階邏輯中,斷言通常和集合相關連。在有意義的高階邏輯中,斷言則會被解釋為集合的集合。 存在許多對一階邏輯是可靠(所有可證的敘述皆為真)且完備(所有為真的敘述皆可證)的演繹系統。雖然一階邏輯的邏輯歸結只是半可判定性的,但還是有許多用於一階邏輯上的自動定理證明。一階邏輯也符合一些使其能通過證明論分析的元邏輯定理,如勒文海姆–斯科倫定理及緊緻性定理。 一階邏輯是數學基礎中很重要的一部份,因為它是公理系統的標準形式邏輯。許多常見的公理系統,如一階皮亞諾公理和包含策梅洛-弗蘭克爾集合論的公理化集合論等,都可以形式化成一階理論。然而,一階定理並沒有能力去完整描述及範疇性地建構如自然數或實數之類無限的概念。這些結構的公理系統可以由如二階邏輯之類更強的邏輯來取得。.
亚里士多德
亞里士多德(Αριστοτέλης,Aristotélēs,),古希腊哲学家,柏拉圖的學生、亚历山大大帝的老師。他的著作包含許多學科,包括了物理學、形而上學、詩歌(包括戲劇)、音乐、生物學、經濟學、動物學、邏輯學、政治、政府、以及倫理學。和柏拉圖、蘇格拉底(柏拉圖的老師)一起被譽為西方哲學的奠基者。亞里士多德的著作是西方哲學的第一個廣泛系統,包含道德、美學、邏輯和科學、政治和形而上学。 亞里士多德关于物理學的思想深刻地塑造了中世紀的學術思想,其影響力延伸到了文藝復興時期,雖然最終被牛頓物理學取代。在動物科學方面,他的一些意見仅在19世纪被确信是準確的。他的学术领域还包括早期关于形式逻辑理论的研究,最终这些研究在19世纪被合并到了现代形式逻辑理论裡。在形而上學方面,亞里士多德的哲學和神學思想在伊斯蘭教和猶太教的傳統上產生了深遠影響,在中世紀,它繼續影響着基督教神學,尤其是天主教教會的學術傳統。他的倫理學,虽然自始至终都具有深刻的影响,后来也随着新兴現代美德倫理的到来获得了新生。今天亞里士多德的哲學仍然活躍在學術研究的各个方面。在經濟學方面,亞里士多德對於經濟活動的分類與看法持續影響到中世紀與重農主義,直到被亞當斯密的古典經濟學派取代為止。雖然亞里士多德寫了許多論文和優雅的對話(西塞羅描述他的文學風格為“金河”),但是大多數人認為他的著作现已失散,只有大約三分之一的原创作品保存了下來。.
亚里士多德和数理逻辑 · 亚里士多德和阿尔弗雷德·塔斯基 ·
伯特兰·罗素
伯特兰·亚瑟·威廉·罗素,第三代羅素伯爵(Bertrand Arthur William Russell, 3rd Earl Russell,),OM,FRS,英国哲学家、数学家和逻辑学家,致力于哲学的大众化、普及化。 在數學哲學上採取弗雷格的邏輯主義立場,認為數學可以化約到邏輯,哲學可以像邏輯一樣形式系統化,主張逻辑原子論。 1950年,罗素获得诺贝尔文学奖,以表彰其“西歐思想,言論自由最勇敢的君子,卓越的活力,勇氣,智慧與感受性,代表了諾貝爾獎的原意和精神”。 1921年罗素曾於中国讲学,对中国学术界有相当影响。.
伯特兰·罗素和数理逻辑 · 伯特兰·罗素和阿尔弗雷德·塔斯基 ·
元数学
元數學(Metamathematics),又譯為超數學,使用數學技術來研究數學本身的一門學科。一般来说,元数学是一种将数学作为人类意识和文化客体的科学思维或知识。更进一步来说,元数学是一种用来研究数学和数学哲学的数学。“数学的数学”是于19世纪初由通常的数学分离出来的,它最初研究的对象是在所谓的数学危机。将二者混为一谈会导致一些矛盾,典型例子有理查德悖论。 比如说,元数学的主题之一就是:分析某些数学要素是否在任意的数学系统中都是可证实或者证伪的。 许多关于数学基础与数学哲学的论说都涉及元数学的概念,它们往往不能被当作我们通常所说的“问题”来处理。元数学的基本假设是:数学的内容可以由一个形式系统获得,比如一个序理论或一个公理化集合论。 元数学与数理逻辑休戚相关,因而这两者的发展也大同小异。元数学的发端大概要追溯到弗雷格的工作:《概念文字》。大卫·希尔伯特首先引进了带有正则性的“元数学”(metamathematics with regularity)这一说法(见希尔伯特计划)。这也就是现在所说的证明论。另一个重要的现代分支是模型论。这一领域的其他重要人物有:伯特兰·罗素,斯科尔姆(Thoralf Skolem),普斯特(Emil Post),邱奇,克莱尼,蒯因,贝纳瑟拉夫(Paul Benacerraf),普特南,柴汀(Gregory Chaitin),以及最著名的塔斯基和哥德尔。特别地,哥德尔证明了:给定任意有限多条皮亚诺算术的公理,都存在一些正确的命题,无法用所给公理来证明,即所谓的哥德尔不完备定理。某种意义上来说,这一结果是迄今为止元数学与数学哲学的最高成就。.
阿隆佐·邱奇
阿隆佐·邱奇(Alonzo Church,)是美国数学家,1936年发表可计算函数的第一份精确定义,对算法理论的系统发展做出巨大贡献。邱奇在普林斯顿大学受教并工作四十年,曾任数学与哲学教授。1967年迁往加利福尼亚大学洛杉矶分校。 解决算法问题包括构造一个能解决某一指定集及其他相关集的算法,如果该算法无法构建,则表明该问题是不可解的。证明此种问题不可解性的定理是算法理论中的一大突破,邱奇的算法即为该类算法的首例。邱奇证明了基本几何问题的算法不可解性。同时证明了一阶逻辑中真命题全集的解法问题是不可解的。.
数理逻辑和阿隆佐·邱奇 · 阿尔弗雷德·塔斯基和阿隆佐·邱奇 ·
逻辑
邏輯(λογική;Logik;logique;logic;意大利语、西班牙语、葡萄牙语: logica),又稱理則、論理、推理、推論,是对有效推論的哲學研究。邏輯被使用在大部份的智能活動中,但主要在哲學、心理、学习、推论统计学、脑科学、數學、語義學、 法律和電腦科學等領域內被視為一門學科。邏輯討論邏輯論證會呈現的一般形式,哪種形式是有效的,以及其中的謬論。 邏輯通常可分為三個部份:歸納推理、溯因推理和演繹推理。 在哲學裡,邏輯被應用在大多數的主要領域之中:形上學/宇宙論、本體論、知識論及倫理學。 在數學裡,邏輯是指形式逻辑和数理邏輯,形式逻辑是研究某個形式語言的有效推論。主要是演繹推理。 在辯證法中也會學習到邏輯。数理邏輯是研究抽象邏輯关系和数学基本的问题。 在心理、脑科学、語義學、 法律裡,是研究人类思想推理的处理。 在学习、推论统计学裡,是研究最大可能的结论。主要是歸納推理、溯因推理。 在電腦科學裡, 是研究各种方法的性质,可能性,和实现在机器上。主要是歸納推理、溯因推理,也有在歸納推理的研究。 从古文明开始(如古印度、中國和古希臘)都有對邏輯進行研究。在西方,亞里斯多德將邏輯建立成一門正式的學科,並在哲學中給予它一個基本的位置。.
数理逻辑和逻辑 · 逻辑和阿尔弗雷德·塔斯基 ·
抽象代数
抽象代数作为数学的一门学科,主要研究对象是代数结构,比如群、环、-zh-hans:域;zh-hant:體-、模、向量空间、格與域代数。「抽象代數」一詞出現於20世紀初,作為與其他代數領域相區別之學科。 代數結構與其相關之同態,構成數學範疇。範疇論是用來分析與比較不同代數結構的強大形式工具。 泛代數是一門與抽象代數有關之學科,研究將各類代數視為整體所會有的性質與理論。例如,泛代數研究群的整體理論,而不會研究特定的群。.
模型论
数学上,模型论(Model theory)是从集合论的论述角度对数学概念表现(representation)的研究,或者说是对于作为数学系统基础的“模型”的研究。粗略地说,该学科假定有一些既存的数学“对象”,然后研究:当这些对象之间的一些运算或者一些关系乃至一组公理被给定时,可以相应证明出什么,以及如何证明。 比如实数理论中一个模型论概念的例子是:我们从一个任意集合开始,作为集合元素的每个个体都是一个实数,其间有一些关系和(或)函数,例如。若我们在该语言中问"∃ y (y × y.
戈特洛布·弗雷格
弗里德里希·路德维希·戈特洛布·弗雷格(德语:Friedrich Ludwig Gottlob Frege,;),著名德国数学家、逻辑学家和哲学家。是数理逻辑和分析哲学的奠基人。.
戈特洛布·弗雷格和数理逻辑 · 戈特洛布·弗雷格和阿尔弗雷德·塔斯基 ·
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
数学和数理逻辑 · 数学和阿尔弗雷德·塔斯基 ·
数学基础
数学上,数学基础一词有时候用于数学的特定领域,例如数理逻辑,公理化集合论,证明论,模型论,和递归论。但是寻求数学的基础也是数学哲学的中心问题:在什么终极基础上命题可以称为真? 目前占统治地位的数学范式是基于公理化集合论和形式逻辑的。實際上,幾乎所有现在的数学定理都可以表述為集合论下的定理。在这个观点下,所謂数学命题的真实性,不过就是该命题可以从集合论公理使用形式逻辑推导出来。 这个形式化的方法不能解释一些问题:为什么我们應沿用现行的公理而不是別的,为什么我们應沿用现行的逻辑规则而不是別的,为什么"真"数学命题(例如,算術領域的皮亚诺公理)在物理世界中似乎是真的。这被尤金·维格纳在1960年叫做“数学在自然科学中无理由的有效性”(The unreasonable effectiveness of mathematics in the natural sciences)。 上述的形式化真实性也可能完全没有意义:有可能所有命题,包括自相矛盾的命题,都可以从集合论公理导出。而且,作为歌德尔第二不完备定理的一个结果,我们永远無法排除這種可能性。 在數學實在論(有时也叫柏拉图主义)中,独立于人类的数学对象的世界的存在性被作为一个基本假设;这些对象的真实性由人类发现。在这种观点下,自然定律和数学定律有類似的地位,因此"有效性"不再"无理由"。不是我们的公理,而是数学对象的真实世界构成了數學基础。但,显然的问题在于,我们如何接触这个世界? 一些数学哲学的现代理论不承认這種數學基础的存在性。有些理论倾向于專注,並試圖把数学家的实際工作視為一種社會群體來作描述和分析。也有理論试图创造一个,把数学在"现实世界"中的可靠性歸結為人類的認知。这些理论建议只在人类的思考中找到基础,.
上面的列表回答下列问题
- 什么数理逻辑和阿尔弗雷德·塔斯基的共同点。
- 什么是数理逻辑和阿尔弗雷德·塔斯基之间的相似性
数理逻辑和阿尔弗雷德·塔斯基之间的比较
数理逻辑有44个关系,而阿尔弗雷德·塔斯基有74个。由于它们的共同之处11,杰卡德指数为9.32% = 11 / (44 + 74)。
参考
本文介绍数理逻辑和阿尔弗雷德·塔斯基之间的关系。要访问该信息提取每篇文章,请访问: