徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

摩尔 (单位)

指数 摩尔 (单位)

莫耳(拉丁文「一團」),是物质的量的国际单位,符号为mol(mole)。1莫耳是指化学物质所含基本微粒个数等于12克的碳-12(_6^\!\mbox)所含原子个数,即阿伏伽德罗常数。使用莫耳时,应指明基本微粒,可以是分子、原子、离子、电子或其他基本微粒,也可以是基本微粒的特定组合体。1莫耳物质中所含基本微粒的个数等于阿伏伽德罗常数,符号为NA,数值约是6.02214129×1023,常取6.02×1023。摩尔是國際單位制的七個基本單位之一,在量綱分析中會用符號n表示。 摩尔可以用于表达原子、电子和离子等微观粒子的数量。在化学反应的定量计算中,常使用摩尔。例如氢气与氧气反应生成水,可以用化学方程式表达为:2+→2。其意义为2摩尔氢气与1摩尔氧气反应生成2摩尔水。溶液的浓度也常用物质的量浓度,即摩尔浓度表示,例如1mol/L的氯化钠溶液,表示每升该溶液中含有1摩尔氯化钠。 摩尔质量定义为一摩尔某物质的质量,以克计量时在数值上等于该物质的相对分子质量(或相对原子质量)。例如水分子的相对分子质量约为18.015,一摩尔水的质量为18.015克。 “克-分子”(gram-molecule)曾被用来表达本质上相同的概念,1克-分子的純物質表示其質量等於該物質數量為阿伏加德罗常数時的質量。而“克-原子”(gram-atom)则用来表示一个相关但不同的概念,1克-原子的元素表示其質量等於該原子的數量為阿伏加德罗常数時的質量。例如1摩尔是1“克-分子”,是由1“克-原子”及2“克-原子”組成。。 一些科学家以1摩尔物质所含微粒数——亞佛加厥数确定了一个纪念日——摩尔日。摩尔日纪念活动在每年的10月23日举行,也有一些纪念活动在6月2日举行。.

53 关系: 原子原子量卡尔斯鲁厄会议千克同位素威廉·奥斯特瓦尔德定比定律亨利·维克托·勒尼奥依数性化学计量数化学方程式國際度量衡大會國際度量衡局分子分子量分米公升因次分析国际单位国际单位制国际单位制基本单位国际单位制词头理想氣體定律碳-12离子科学技术数据委员会米 (单位)约翰·道尔顿热力学系统电子物质的量道尔顿分压定律體積莫耳濃度质谱法阿伏伽德罗常数重量摩爾濃度氧气氯化钠永斯·贝采利乌斯法拉第常数溶剂溶液斯坦尼斯劳·坎尼扎罗无量纲量摩尔体积...摩尔分数摩尔质量摩尔日 扩展索引 (3 更多) »

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 摩尔 (单位)和原子 · 查看更多 »

原子量

原子量(atomic mass),也称原子质量或相对原子质量,符号ma,是指單一原子的質量,其單位為原子质量单位(符號u或Da,以往曾用amu) ,定義為一个碳12原子靜止質量的。原子質量以質子和中子的質量為主,元素的原子量几近等于其質量數。 若將原子量除以原子质量单位,會得到一個無因次量,這個無因次量稱為「相對同位素質量」(relative isotopic mass)。因此碳12的原子量是12u或是12 Da,而一個碳12原子的相對同位素質量就是12。.

新!!: 摩尔 (单位)和原子量 · 查看更多 »

卡尔斯鲁厄会议

卡尔斯鲁厄会议是1860年9月3日-9月6日在德国工业城市卡尔斯鲁厄的博物馆大厅召开的一次国际化学科学会议,是历史上第一次国际化学科学会议,也是世界上第一次国际科学会议,在化学史上有着重要地位 。卡尔斯鲁厄会议是由德国化学家凯库勒、维尔菜因、法国化学家武尔茨等人提议召开的,在这次会议上,来自欧洲大陆15个国家的一百四十余位化学家就原子与分子的概念、化学命名法、化学反应当量、化学符号等化学科学的基础性问题达成一致。卡尔斯鲁厄会议之后,世界性的化学科学共同体开始形成,会议的一些共识沿用至今,而另一些共识则随着化学科学的发展而逐渐淘汰。.

新!!: 摩尔 (单位)和卡尔斯鲁厄会议 · 查看更多 »

千克

--( → ,,單位符号kg),又称--,国际单位制中質量的基本單位。在国际单位制的七个基本单位中,千克是唯一一個带有词头的基本單位。 目前,千克是国际单位制基本单位中唯一仍使用实物进行定义的单位,即被定义为国际千克原器的质量。2011年国际度量衡大会(CGPM)会议原则性同意以普朗克常数重新定义千克,并计划于2018年会议上做出最终决定。.

新!!: 摩尔 (单位)和千克 · 查看更多 »

同位素

同位素(Isotope)是某種特定化學元素之下的不同種類,同一種元素下的所有同位素都具有相同原子序數,質子數目相同,但中子數目卻不同。這些同位素在化學元素週期表中佔有同一個位置,因此得名。 例如氫元素中氘和氚,它們原子核中都有1個質子,但是它們的原子核中分別有0個中子、1個中子及2個中子,所以它們互為同位素。.

新!!: 摩尔 (单位)和同位素 · 查看更多 »

威廉·奥斯特瓦尔德

弗里德里希·威廉·奥斯特瓦尔德(德语:Friedrich Wilhelm Ostwald,拉脱维亚语:Vilhelms Ostvalds;),出生于拉脱维亚的德国籍物理化学家。他提出了稀释定律,对电离理论和质量作用定律进行了验证。他将热力学原理引入结晶学和催化现象的研究中,解释了自然和生产中的许多现象,并成功地完成了催化剂的工业应用,提出了奥斯特瓦尔德过程。 他也是出色的教材作者和卓越的学术组织者,创立过多种期刊,培养了大量的年青研究者,使得物理化学得以成为一门独立的科学和其他化学的理论基础,因此被认为是物理化学的创立者之一。另外他在颜色学、科学史和哲学方面也有独到的贡献。1909年因其在催化剂的作用、化学平衡、化学反应速率方面的研究的突出贡献,被授予诺贝尔化学奖 。.

新!!: 摩尔 (单位)和威廉·奥斯特瓦尔德 · 查看更多 »

定比定律

即每一种化合物,不论是天然存在的,还是人工合成的,也不论它是用什么方法制备的,其组成元素的质量比一定,於1799年由普劳斯特提出。換句話說,就是每一种化合物都有一定的组成,又称定组成定律。.

新!!: 摩尔 (单位)和定比定律 · 查看更多 »

亨利·维克托·勒尼奥

亨利·维克托·勒尼奥(Henri Victor Regnault,),法国化学家、物理学家,因精确测量气体热力性质而闻名,是早期热力学家之一。.

新!!: 摩尔 (单位)和亨利·维克托·勒尼奥 · 查看更多 »

依数性

依数性(Colligative Property)是指溶液所具有的一类性质,这类性质只取决于溶质在溶剂中的「粒子」数量,而與溶質的本性無關。溶液的依数性包括:溶剂蒸气压的降低导致溶液凝固点下降、沸点上升和渗透压改变等性质。通过测量稀的非离子水溶液(例如尿素或葡萄糖的水溶液)中的依数性,可以求得溶质的相对分子质量的精确值。另外,测量离子溶液的依数性则可以估计溶质电离的百分比。 含非揮發性溶質的溶液的四種性質具有依數性:.

新!!: 摩尔 (单位)和依数性 · 查看更多 »

化学计量数

化学计量数或化学计量是化学反应方程式中各反应物或生成物前的数值。例如,图中为甲烷在空气中完全燃烧的方程式,方程式中O2、H2O前的数值(或“系数”)2就是它的化学计量。当一个物质前的数值为1时,便省略不写,如式中的CH4和CO2。 将一个未加化学计量数的方程补充化学计量数,使其符合物质、电荷守恒的过程叫做化学反应方程式的配平。.

新!!: 摩尔 (单位)和化学计量数 · 查看更多 »

化学方程式

化学方程式、化学反应式或化学反应方程式(Chemical equation)是用来描述各种物质之间的不同化学反应的式子。 化学方程式反映的是客观事实。因此书写化学方程式要遵守两个原则:一是必须以客观事实为基础,绝不能凭空臆想、臆造事实上不存在的物质和化学反应;二是要遵守质量守恒定律,等号两边各原子种类与数目必须相等。.

新!!: 摩尔 (单位)和化学方程式 · 查看更多 »

國際度量衡大會

國際度量衡大會(Conférence générale des poids et mesures,簡稱CGPM)是依1875年訂定的米制公約為維護國際單位制(SI制)所設立的3個組織中的1個。另外2個組織是國際度量衡局(BIPM)及國際度量衡委員會(CIPM)。 國際度量衡大會有52個會員國及組織會員,是國際度量衡局的最高權力機構,每4到6年會在法國塞夫勒展開會議。.

新!!: 摩尔 (单位)和國際度量衡大會 · 查看更多 »

國際度量衡局

國際度量衡局(法语:Bureau international des poids et mesures,縮寫:BIPM)是依1875年订定的米制公约,为维护国际单位制(SI制)所设立的3个组织中的1个。其宗旨為「確保國際度量衡標準根据米制公约施行」。 另外两个依《米制公约》设立的组织为国际计量大会(CGPM)及国际计量委员会(CIPM)。.

新!!: 摩尔 (单位)和國際度量衡局 · 查看更多 »

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

新!!: 摩尔 (单位)和分子 · 查看更多 »

分子量

分子量,又称“相对分子质量”,指组成分子的所有原子的原子量的总和,分子量的符号为Mr。定义为物质分子或特定单元的平均质量与12C质量的1/12之比值。由于是相对值,所以为无量纲量,单位为1。.

新!!: 摩尔 (单位)和分子量 · 查看更多 »

分米

分米(decimetre、),--,是国际单位制长度单位,符号 dm。 1 立方分米.

新!!: 摩尔 (单位)和分米 · 查看更多 »

公升

1-公升-等於邊長為10公分立方體的體積1公斤的水,在3.98 °C時體積約為1-公升- --,通常簡稱為升,是容量计量单位,符號為l。過去曾經採用小寫手寫體\ell作為符號,但由於印刷不方便,所以改用大寫印刷體L。公升本身不是國際單位制(SI)單位,但它是米制单位,而且是接受與SI合併使用的單位。 最初的法国米制系统以公升作为基本单位。litre是从更舊的单位发展而来。litron来自于拉丁语转译的希腊语,大约等于0.831公升。公升在后来的几个米制系统内也使用过,是国际单位制接受的的非SI单位。, p. 124.

新!!: 摩尔 (单位)和公升 · 查看更多 »

克( →, →,符号 g),为质量单位,相等于千分之一公斤。一克等于国际千克原器质量的1‰。.

新!!: 摩尔 (单位)和克 · 查看更多 »

因次分析

物理量的量綱可以用來分析或檢核幾個物理量之間的關係,這方法稱為量綱分析(dimensional analysis)。通常,一個物理量的量綱是由像質量、長度、時間、電荷量、溫度一類的基礎物理量綱結合而成。例如,速度的量綱為長度每單位時間,而計量單位為公尺每秒、英里每小時或其它單位。量綱分析所根據的重要原理是,物理定律必需跟其計量物理量的單位無關。任何有意義的方程式,其左手邊與右手邊的量綱必需相同。檢查有否遵循這規則是做量綱分析最基本的步驟。 推導獲得的方程式或計算結果是否基本上合理,慣常可以用量綱分析來檢察。對於較複雜的物理狀況,量綱分析也可以用來構築合理假定(參見關聯模型),然後,做嚴格的實驗加以測試,或用已發展成功的理論仔細檢試。量綱分析能夠按照各種物理量的量綱,將它們詳細分類。.

新!!: 摩尔 (单位)和因次分析 · 查看更多 »

国际单位

国际单位(International unit,簡寫為IU;unité internationale,簡寫為IU)是用生物活性来表示某些抗生素、激素、维生素及抗生素量的药学单位。.

新!!: 摩尔 (单位)和国际单位 · 查看更多 »

国际单位制

國際單位制(Système International d'Unités,簡稱SI),-->源於公制(又稱米制),是世界上最普遍採用的標準度量系統。國際單位制以七個基本單位為基礎,由此建立起一系列相互換算關係明確的「一致單位」。另有二十個基於十進制的詞頭,當加在單位名稱或符號前的時候,可用於表達該單位的倍數或分數。 國際單位制源於法國大革命期間所採用的十進制單位系統──公制;現行制度從1948年開始建立,於1960年正式公佈。它的基礎是米-千克-秒制(MKS),而非任何形式的厘米-克-秒制(CGS)。國際單位制的設計意圖是,先定義詞頭和單位名稱,但單位本身的定義則會隨著度量科技的進步、精準度的提高,根據國際協議來演變。例如,分別於2011年、2014年舉辦的第24、25屆國際度量衡大會討論了有關重新定義公斤的提案。 隨著科學的發展,厘米-克-秒制中出現了不少新的單位,而各學科之間在單位使用的問題上也沒有良好的協調。因此在1875年,多個國際組織協定《米制公約》,創立了國際度量衡大會,目的是訂下新度量衡系統的定義,並在國際上建立一套書寫和表達計量的標準。 國際單位制已受大部分發達國家所採納,但在英語國家當中,國際單位制並沒有受到全面的使用。.

新!!: 摩尔 (单位)和国际单位制 · 查看更多 »

国际单位制基本单位

国际单位制基本单位是一系列由物理学家订定的基本标准单位。国际单位制共有7个基本单位。其中,只有公斤是用實物來定義。 中华人民共和国用的单位名称依据《中华人民共和国法定计量单位》。中華民國用的單位名稱依據中華民國經濟部公告的《》。.

新!!: 摩尔 (单位)和国际单位制基本单位 · 查看更多 »

国际单位制词头

国际单位制词头表示单位的倍数和分数,目前有20个词头,大多数是千的整數次冪。.

新!!: 摩尔 (单位)和国际单位制词头 · 查看更多 »

理想氣體定律

#重定向 理想气体状态方程.

新!!: 摩尔 (单位)和理想氣體定律 · 查看更多 »

碳-12

12C是质量数为12的碳原子,其质子数和中子數都为6,它是碳元素的一種同位素,在世界现存碳元素中占比98.89%,是最常见的碳同位素。 碳-12原子被用来作为阿伏伽德罗常数(亞佛加厥常數)的标准:12克碳-12中所含原子的个数被定义为阿伏伽德罗常数6.022。.

新!!: 摩尔 (单位)和碳-12 · 查看更多 »

磅(pound,簡寫:lb)是英國與美國所使用的英制質量單位。歷史上經過多年的演變,英制質量系統對磅產生過許多不同的定義,例如金衡磅、塔磅、商人磅、倫敦磅、公制磅、國際磅等。目前最普遍被使用的定義是國際常衡磅(國際磅)。.

新!!: 摩尔 (单位)和磅 · 查看更多 »

离子

離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.

新!!: 摩尔 (单位)和离子 · 查看更多 »

科学技术数据委员会

科学技术数据委员会(CODATA)是由国际科学理事会于1966年成立的一个跨学科委员会。它旨在改善更改、精确测量、储存、检索重要的科学技术数据。 科学技术数据委员会每两年举办一次科学技术数据委员会国际大会。.

新!!: 摩尔 (单位)和科学技术数据委员会 · 查看更多 »

是國際單位制中時間的基本單位 ,符號是s。有時也會借用英文缩写標示為sec。秒在英文裡的原始詞義是計算小時的六十分之一(分鐘)後,再計算六十分之一。在西元1000至1960年之間,秒的定義是平均太陽日的1/86,400(在一些天文及法律的定義中仍然適用)。在1960至1967年之間,定義為1960年地球自轉一周時間的1/86,400 ,現在則是用原子的特性來定義。秒也可以用機械鐘、電子鐘或原子鐘來計時。 國際單位制詞頭經常與秒結合以做更細微的劃分,例如ms(毫秒,千分之一秒)、µs(微秒,百萬分之一秒)和ns(奈秒,十億分之一秒)。雖然國際單位制詞頭雖然也可以用於擴增時間,例如ks(千秒)、Ms(百萬秒)和Gs(十億秒),但實際上很少這樣子使用,大家都還是習慣用60進位的分、時和24進位的日做為秒的擴充。 秒不但是國際單位制中時間的基本單位,也是公分-克-秒制、米-公斤-秒制、米-公噸-秒制及英制單位下的時間基本單位。.

新!!: 摩尔 (单位)和秒 · 查看更多 »

米 (单位)

-- --( → metre,),中國大陸和香港音譯為「--」(亦稱「公--尺」),台灣作「--」(口語偶稱「--」),舊譯「邁當」、「--達」。它是国际单位制基本长度单位,符号为m。1米的长度最初定义为通过巴黎的經線上从地球赤道到北极点的距离的千万分之一。其后随着人们对度量衡学的认识加深,米的长度的定义几经修改。从1983年至今,米的长度已经被定义为“光在真空中于1/299792458秒内行进的距离”。.

新!!: 摩尔 (单位)和米 (单位) · 查看更多 »

约翰·道尔顿

约翰·道尔顿(John Dalton,,--,英国皇家学会成员,化学家、物理学家。近代原子理论的提出者,对色盲亦有研究。.

新!!: 摩尔 (单位)和约翰·道尔顿 · 查看更多 »

热力学系统

热力学系统(Thermodynamic system)是指用于热力学研究的有限宏观区域,是热力学的研究对象。它的外部空间被称为这个系统的环境。一个系统的边界将系统与它的外部隔开。这个边界既可以是真实存在的,也可以是假想出来的,但必须将这个系统限制在一个有限空间里。系统与其环境可以在边界进行物质,功,热或其它形式能量的传递。而热力学系统可以从它的边界(或边界的一部分)所允许的传递类型进行分类。 热力学系统有一系列的状态函数,比如体积,压强,温度等。这些量都是可以通过实验测量的宏观量。这些量的数值共同决定这个系统的热力学状态。一个热力学系统的状态函数通常存在一个或多个函数关系。这些关系可由状态方程表述。平衡热力学不涉及对这些状态函数的通量的研究。因为由热力学平衡的定义可以自然得到,这些函数的通量的值为零。当然,平衡热力学可能会涉及使通量不为零的过程,但在热力学过程进行前,这些过程必需停止。非平衡热力学允许状态函数通量不为零。通量不为零表示在系统和它的环境间存在物质,能量或熵等的传递。 孤立系统是一种假想存在的系统。这种系统与其外界无任何相互作用。在理想状况下,其内部处于热力学平衡,即它的热力学状态不随时间变化。而非孤立系统根据它的边界的性质可以与它的环境处于热力学平衡。它们也可能处于时时变化或者循环变化(一种稳态)的非平衡状态。系统与其环境的相互作用可以通过热传递或者长程力等方式进行。 热力学系统并非一个普遍概念,并不能代表全部的物理学系统。而这里定义的热力学系统的物理存在可以认为是平衡热力学的基础公设,尽管并没有被列为一条热力学定律。而在一些文献中,热力学第零定律通常的表述被认为是这一公设的一个推论。 热力学系统的概念可以追溯到1824年尼古拉·卡诺对于热机的研究。他当时称其为热机的工作物质。.

新!!: 摩尔 (单位)和热力学系统 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 摩尔 (单位)和电子 · 查看更多 »

物质的量

物质的量(在台灣稱為物量)也被称为物质的摩尔量、莫耳數,但不是正规用法,是量度一定量粒子的集合体中所含粒子数量的物理量。 在国际单位制中,物质的量的符号为n,单位为摩尔(mol),量纲为N。摩尔是七个基本单位之一。 物质的量可用来度量所有粒子,如原子、分子、电子等,或者它们的特定组合。使用时要说明粒子的类别。 1971年第14届国际计量大会决议通过了摩尔作为物质的量的单位,从此物理学和化学上的“物质的量”被统一起来。.

新!!: 摩尔 (单位)和物质的量 · 查看更多 »

道尔顿分压定律

道尔顿分壓定律(也称道尔顿定律,道耳頓分壓定律)描述的是理想气体的特性。这一经验定律是在1801年由约翰·道尔顿所观察得到的。其描述如下: 在组分之间不发生化学反应的前提下,理想气体混合物的压強等于各组分的分压之總和。数学描述为: 其中 \ p_1, p_2, p_n 为每一个组分的分压。 结合玻意耳定律和阿伏伽德罗定律(亞佛加厥定律),可以推知理想气体各组分的分压之比等于其莫耳组分之比,即 其中 \ m_1, m_2, m_n 为每一个组分的摩尔數。 需要注意的是,实际气体并不严格遵从道尔顿分压定律,在高压情况下尤其如此。当压強很高时,分子所占的体积和分子之间的空隙具有可比性;同时,更短的分子间距离使得分子间作用力增强,从而会改变各组分的分压。这两点在道尔顿定律中并没有体现。.

新!!: 摩尔 (单位)和道尔顿分压定律 · 查看更多 »

體積莫耳濃度

積莫耳濃度(molarity,通常以大寫M表示)是化學的一種通用濃度單位,體積莫耳濃度c_i定義為指构成溶液的某组分i的物质的量n_i除以溶液的體積V: 在大多數情况下,體積莫耳濃度指溶質的體積莫耳濃度,即溶質的物質的量除以溶液的體積。.

新!!: 摩尔 (单位)和體積莫耳濃度 · 查看更多 »

质谱法

质谱(mass spectrometry,缩写:MS)是一种电离化学物质并根据其质荷比(质量-电荷比)对其进行排序的分析技术。简单来说,质谱测量样品内的质量。 质谱法被用于许多不同领域,并被用于纯样品和复杂混合物。 质谱是离子信号作为质荷比的函数的曲线图。这些频谱被用于确定样品的元素或,颗粒和分子的质量,并阐明分子的化学结构,如肽和其他化合物。 在典型的质谱法中,可以是固体,液体或气体的样品被电离,例如用电子轰击它。 这可能导致一些样品的分子破碎成带电的碎片。 然后,这些离子根据其质荷比被分离,通常通过加速它们并使其经受电场或磁场:相同质荷比的离子将经历相同数量的偏转。离子通过能够探测带电粒子的机制被探测到,例如一个电子倍增管。 结果被显示为作为质荷比的函数的已经探测离子的相对丰度的频谱。 样品中的原子或分子可以通过将已知质量与鉴定的质量相关联或通过特征分解模式来鉴定。.

新!!: 摩尔 (单位)和质谱法 · 查看更多 »

阿伏伽德罗常数

在物理学和化学中,阿伏伽德罗常数(符号:N或L)的定義是一个比值,是一個樣本中所含的基本單元數(一般為原子或分子)N,與它所含的物質量n(單位為摩爾)間的比值,公式為NA.

新!!: 摩尔 (单位)和阿伏伽德罗常数 · 查看更多 »

重量摩爾濃度

在化学中,溶液的重量摩尔浓度(也可称质量摩尔浓度或重量克分子浓度,molality,用b或m表示)是指溶质物质的量n_除以溶剂的质量m_:.

新!!: 摩尔 (单位)和重量摩爾濃度 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

新!!: 摩尔 (单位)和氧 · 查看更多 »

氧气

氧气(Oxygen, Dioxygen,分子式O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助燃。.

新!!: 摩尔 (单位)和氧气 · 查看更多 »

氯化钠

氯化钠(化学式:NaCl),是一种离子化合物。钠离子和氯离子的原子质量分别为22.99和35.45g/mol。也就是说100g的氯化钠中含有39.34 g的钠和 60.66 g的氯。氯化钠是海水中盐分的主要组成部分,它的存在也使得海水有其特有的咸味苦味。氯化钠也是细胞外液的主要盐类,0.9%的氯化鈉水溶液俗称为生理盐水。其可食用的形态是食盐的主要成分,多用于食物的调味和保存。 在工業中,主要用于制造氢氧化钠和氯以及应用于聚氯乙烯、塑料、木浆(紙漿)等許多其他產品的生产过程。由于它可以降低水的冰点,偶尔也用于解冻冰冻的路面。.

新!!: 摩尔 (单位)和氯化钠 · 查看更多 »

水(化学式:H2O)是由氢、氧两种元素组成的无机物,在常温常压下为无色无味的透明液体。水是地球上最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。人类很早就开始对水产生了认识,东西方古代朴素的物质观中都把水视为一种基本的组成元素,水是中國古代五行之一。人體有百分之七十是水。.

新!!: 摩尔 (单位)和水 · 查看更多 »

永斯·贝采利乌斯

永斯·雅各布·貝采利烏斯男爵(Jöns Jacob Berzelius,),又譯--、柏濟力阿斯、貝齊里烏斯、白則里,瑞典化學家。他就讀烏普薩拉大學,獲得後投身於研究工作,並先後在醫學外科學院(卡羅琳學院前身)擔任教師(無薪)和教授(有薪)。貝采利烏斯發現了鈰、硒、矽和釷這四種化學元素,成功測定幾乎所有已知化學元素的原子量,提出了同分異構物、聚合物、同素異形體和催化這些重要化學術語,提出了近似現制的元素符號系統,還在化學教育、學術機構管理、礦物學、分析化學作出貢獻;但是,他主張和活力論後來被確認是錯誤的。貝采利烏斯在1848年逝世,他被譽為現代化學發展的關鍵人物之一、以及「瑞典化學之父」,在生前以至死後均獲享多種榮譽及紀念。.

新!!: 摩尔 (单位)和永斯·贝采利乌斯 · 查看更多 »

法拉第常数

法拉第常数(F)是近代科学研究中重要的物理常数,代表每摩尔电子所携带的電荷,单位C/mol,它是阿伏伽德罗常数 N.

新!!: 摩尔 (单位)和法拉第常数 · 查看更多 »

溶剂

溶剂是一种可以溶解固体,液体或气体溶质的液体,继而成为溶液。在日常生活中最普遍的溶剂是水。而所谓有机溶剂即是包含碳原子的有机化合物溶剂。溶剂通常拥有比较低的沸点和容易挥发。或是可以由蒸馏来去除,从而留下被溶物。因此,溶剂不可以对溶质产生化学反应。它们必须为低活性的。溶剂可从混合物萃取可溶化合物,最普遍的例子是以热水冲泡咖啡或茶。溶剂通常是透明,无色的液体,他们大多都有独特的气味。 溶液的浓度取决于溶解在溶剂内的物质的多少。溶解度则是溶剂在特定温度下,可以溶解最多多少物质。 有机溶剂主要用于干洗(例如四氯乙烯),作涂料稀释剂(例如甲苯、香蕉水、松香水、松节油),作洗甲水或去除胶水(例如丙酮,醋酸甲酯,醋酸乙酯),除锈(例如己烷),作洗洁精(柠檬精),用于香水(酒精)跟用于化学合成。.

新!!: 摩尔 (单位)和溶剂 · 查看更多 »

溶液

溶液(),又稱為單一相均勻混和物(),是由两种或以上純物质所组成的均相、稳定的分散体系;可能是固態、液態或是氣態甚至是其組合;可能導電也可能不導電;可能是固體、膠體或具流動性。溶液不是純物質,不具有一定的組成及一定的性質。但是組成溶液的粒子均勻,肉眼上無法分辨,也無法用傾析法分離組成物。儘管如此,所有的溶液仍可以在物理或化學方法的範圍內分離出內容物。 溶液形成,物質分散的過程稱為溶解。在溶解的過程中,有一物質的相沒有發生變化,稱此物質為溶劑;通常溶劑是體積最大的物質(或水);溶液中除了溶劑以外都稱為溶質。溶質在每單位溶劑內的多寡稱為浓度;溶質在穩定態下所能達到的最大濃度稱為溶解度;濃度低於溶解度的稱為未飽和溶液,濃度等於溶解度的稱為飽和溶液,濃度大於溶解度的稱為過飽和溶液。常見的溶液包括.

新!!: 摩尔 (单位)和溶液 · 查看更多 »

斯坦尼斯劳·坎尼扎罗

斯坦尼斯劳·坎尼扎罗(Stanislao Cannizzaro,),意大利革命者,有机化学家,社会活动家。他曾参与西西里岛反对波旁王朝的起义。他在进行有机合成研究中发现了坎尼扎罗反应。他通过实验结果证实了阿莫迪欧·阿伏伽德罗的分子假说,对原子和分子、原子量与分子量进行了定义和区别,这些工作通过卡尔斯鲁厄会议为科学界所知,对化学理论的发展作出了杰出贡献。.

新!!: 摩尔 (单位)和斯坦尼斯劳·坎尼扎罗 · 查看更多 »

无量纲量

在量綱分析中,無量綱量,或称--、无维量、无维度量、无维数量、无次元量等,指的是沒有量綱的量。它是個單純的數字,量綱為1。無量綱量在數學、物理學、工程學、經濟學以及日常生活中(如數數)被廣泛使用。一些廣為人知的無量綱量包括圓周率(π)、歐拉常數(e)和黃金分割率(φ)等。與之相對的是有量綱量,擁有諸如長度、面積、時間等單位。 無量綱量常寫作兩個有量綱量之積或比,但其最終的綱量互相消除後會得出無量綱量。比如,應變是量度形變的量,定義為長度差與原先長度之比。但由於兩者的量綱均為L(長度),因此相除後得出的量是沒有量綱的。.

新!!: 摩尔 (单位)和无量纲量 · 查看更多 »

摩尔体积

摩尔体积是指单位物质的量的某种物质于标准状态(0℃、100kPa)的体积,也就是一摩尔物质在标准情况下的体积。 V_.

新!!: 摩尔 (单位)和摩尔体积 · 查看更多 »

摩尔分数

化学中对摩尔分数x_i(Mole fraction)的定义为混合物中一种物质组分的摩尔量n_i与各物质组分总摩尔量n_之比: 混合物各物质组分摩尔分数之和等于1: 摩尔分数也可称为量分数(amount fraction)。它与数量分数(number fraction)所指的是同一概念。同是描述混合物组成的物理量,摩尔分数和质量分数都是无量纲量。摩尔分数有时用小写体的希腊字母\chi(chi)代替罗马字母x表示对于气体混合物,IUPAC推荐使用字母y表示。.

新!!: 摩尔 (单位)和摩尔分数 · 查看更多 »

摩尔质量

摩尔质量是一摩尔化学元素或者化合物的质量。质量m与物质的量n之比,称为摩尔质量,符号为M:M.

新!!: 摩尔 (单位)和摩尔质量 · 查看更多 »

摩尔日

摩尔日是一个流传于北美化学家、化學系學生及化學愛好者中的非正式节日,通常他们在10月23日的上午6:02到下午6:02之间庆祝它 。在美式写法中,这两个时刻被记为6:02 10/23,外观与阿伏伽德罗常数6.02×1023相似。阿伏伽德罗常数定义了国际单位制基本单位之一的摩尔:1摩尔物质中所含基本微粒的个数等于阿伏伽德罗常数。 一些美国和加拿大的中学也會庆祝摩尔日,作为激起学生对化学兴趣的一种方法。.

新!!: 摩尔 (单位)和摩尔日 · 查看更多 »

重定向到这里:

Mol摩尔 (化学)莫耳 (单位)莫耳數

传出传入
嘿!我们在Facebook上吧! »