徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

振动

指数 振动

振动(vibration),指一个物体相对于静止参照物或处于平衡状态的物体的往复运动。一般来说振动的基础是一个系统在两个能量形式间的能量转换,振动可以是周期性的(如单摆)或随机性的(如轮胎在碎石路上的运动)。.

77 关系: 加速度动能劲度系数势能原子半衰期复数大小季节实数小提琴工程力学平衡平方弦 (樂器)引力位移微分方程心率地球自转地震共振倒数状态石英钟琴弓秋千簡諧運動系統线性方程组缩放热力学第一定律热力学第二定律相位相关E (数学常数)静止頻率蠕变角频率计量单位谐波谐振质量轉動慣量近似...能量阻尼阻尼比赫兹蒸汽機車重覆度自由度週期欧拉公式比例水平永动机振动振幅振荡器方位无限时间摩擦力摩擦系数晶体 扩展索引 (27 更多) »

加速度

加速度是物理学中的一个物理量,是一个矢量,主要应用于经典物理当中,一般用字母\mathbf表示,在国际单位制中的单位为米每二次方秒(\mathrm)。加速度是速度矢量對于时间的变化率,描述速度的方向和大小变化的快慢。 在经典力学中,牛顿第二定律说明了力和加速度成正比,這定律又稱為「加速度定律」。假設施加於物體的淨外力為零,則加速度為零,速度為常數,由於動量是質量與速度的乘積,所以動量守恆。在電動力學裏,呈加速度運動的帶電粒子會發射电磁辐射。.

新!!: 振动和加速度 · 查看更多 »

动能

动能是物质运动时所得到的能量。它通常被定义成使某物体从静止状态至运动状态所做的功。由于运动是相对的,动能也是相对于某参照系而言。同一物体在不同的参照系会有不同的速率,也就是有不同的动能。动能的国际单位是焦耳(J),以基本单位表示是千克米平方每秒平方(kg·m2·s-2)。一个物体的动能只有在速率改变时才会改变。.

新!!: 振动和动能 · 查看更多 »

劲度系数

劲度系数,又称弹簧常数,刚性系数,旧称倔强系数,特指线性弹簧弹力和轴向变形的比值,数学表示为: k为劲度系数,f为弹簧产生的弹力,x为伸长量,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。劲度系数的倒数称为力顺。.

新!!: 振动和劲度系数 · 查看更多 »

势能

势能(Potential Energy),亦稱--,是储存于一物理系统内的一种能量,是一个用来描述物体在保守力场中做功能力大小的物理量。保守力作功与路径无关,故可定义一个仅与位置有关的函数,使得保守力沿任意路径所做的功,可表达为这两点函数值的差,这个函数便是势能。 从物理意义上来说,势能表示了物体在特定位置上所储存的能量,描述了作功能力的大小。在适当的情况下,势能可以转化为诸如动能、内能等其他能量。.

新!!: 振动和势能 · 查看更多 »

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 振动和原子 · 查看更多 »

半衰期

半衰期(Half-life)是指某種特定物質的浓度经过某种反应降低到剩下初始时一半所消耗的時間,半衰期是研究反应动力学的一个容易测定的重要参数,数学上可以证明,只有一级反应的半衰期是恒定的数值,且知悉一个一级反应的半衰期便可以计算出该反应的所有动力学参数,所以人们通常只关心一级反应的半衰期。常见的一级反应有:放射性核素的衰变、一级化学反应、药物在体内的吸收和代谢等。.

新!!: 振动和半衰期 · 查看更多 »

复数

#重定向 复数 (数学).

新!!: 振动和复数 · 查看更多 »

大小

大小可以指:.

新!!: 振动和大小 · 查看更多 »

季节

季节是每年循环出现的地理景观相差比较大的几个时间段。不同的地区,其季节的划分也是不同的。对温带地區而言,一年分为四季,即春季、夏季、秋季、冬季;而对于赤道地區只有旱季和雨季,或無季相之分。在極地,並非只有冬季,但春秋季不明顯,以北極為例,五月到九月為夏季,十月到隔年四月為冬季,即没有春季和秋季。.

新!!: 振动和季节 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 振动和实数 · 查看更多 »

小提琴

小提琴(Violin)属于四弦的弓弦乐器,是现代管弦樂團弦乐组中最重要的乐器之一,一般在管弦樂作品中會分成第一小提琴與第二小提琴兩個聲部。作为现代弦乐器中最具份量的乐器,小提琴主要的特点在于其辉煌的声音、高度的演奏技巧和丰富、广泛的表现力。又被稱作為樂器中的女王。 小提琴是提琴家族中最小、音高最高的一種,比它體型大的提琴有中提琴、大提琴和低音提琴。.

新!!: 振动和小提琴 · 查看更多 »

层可以指:.

新!!: 振动和层 · 查看更多 »

工程力学

工程力學,也稱應用力學,是研究宏觀物質運動規律及其在工程上的應用的科學,其基本原理是古典力學或經典力學,是物理學力學的一個分支,及質點及材料力學、塑性力學、彈性力學、黏彈性力學、結構力學、固體力學、流體力學、流變學、空氣力學、水力學和土力學等。工程力學屬於工程學的一門分科,旨在為如在材料科學、機械製造等專業提供理論上的計算方法。這些結合實際的法則可以進行材料的實際測量和選擇等諸多相關任務,工程力學作為輔助科學被運用其中。.

新!!: 振动和工程力学 · 查看更多 »

平衡

平衡,是指一種穩定的狀態,當受到多種對立的各方面,若每一部份都互相抵消,使整體無變化則稱為平衡。在經濟學上,若支出和收入相等,則達到一個平衡;在化學上,若一可逆反應的正反應與逆反應相等,則達到一個平衡;在天文學上,一顆主序帶上的恆星,比如太陽,在恆星內部給定的任何一層,都是在熱壓力(向外)和在其外物質的質量產生的壓力(向內)相等,重力就沒有多餘的能量使恆星塌縮,以達到平衡的狀態。在物理學上,若受力或力矩互相抵消,則也能形成平衡。 若為變動的,但直保留在一個平均而整體為有規律的波動變化,則稱為動態平衡,比如說生態平衡。 此外,平衡亦可以分為穩定平衡和不穩定平衡.

新!!: 振动和平衡 · 查看更多 »

平方

代数中,一个数的平方是此数与它的本身相乘所得的乘积,一个元素的平方是此元素与它的本身相乘所得的乘积,记作x2。平方也可視為求指數为2的幂的值。若x是正实数,这个乘积相当于一个边长为x的正方形的面积;如果x为虚数,则这个乘积为负数。如果x为非虛數的复数,则这个乘积也是复数。 如果实数y.

新!!: 振动和平方 · 查看更多 »

弦可以指:.

新!!: 振动和弦 · 查看更多 »

弦 (樂器)

弦線,大部分弦樂器例如吉他、豎琴、鋼琴及全體提琴家族的發聲源。弦線被端固定於兩個支點,在接受力量所做成的振動而在特定頻率發音。而弦的長度、粗度、張力、所受力的類型和大小,都可影響弦的發聲效果。.

新!!: 振动和弦 (樂器) · 查看更多 »

引力

重力(Gravitation或Gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。 引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。 在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成天体,同时也让天体之间相互吸引,形成按照轨道运转的天体系统。此外,月球以及太陽对地球上海水的引力,形成了地球上的潮汐。.

新!!: 振动和引力 · 查看更多 »

位移

在物理學裏,位移是位置的改變。假設從舊位置\mathbf\,\!改變到新位置\mathbf\,\!,則位移是\Delta\mathbf.

新!!: 振动和位移 · 查看更多 »

微分方程

微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.

新!!: 振动和微分方程 · 查看更多 »

心率

心率是指心脏跳动的频率,心脏每分钟跳动的次数。正常人平静时每分钟60到100次,運動時心跳會加速,心肺功能較好的運動員會比正常人的心跳要慢。.

新!!: 振动和心率 · 查看更多 »

地球自转

地球自轉是固體的地球繞著自己的軸轉動,方向是由西向東。從天球的北極點鳥瞰,地球自轉是逆時針旋轉;从南极点上空看是顺时针旋转。.

新!!: 振动和地球自转 · 查看更多 »

地震

地震(Earthquake)震動,可由自然現象如地殼突然運動、火山活動及隕石撞擊引起,亦可由人為活動如地下核試驗造成。歷史曾記載的災害性地震主要由地殼突然運動所造成,地殼在板塊運動的過程中累積應力,當地殼無法繼續累積應力時破裂釋放出地震波,使地面發生震動,震動可能引發山泥傾瀉甚或火山活動。如果地震在海底發生,海床的移動甚至會引發海嘯。 地震可由地震儀透過對地震波的觀察來量測,地震規模表示地震所釋放出來的能量大小,地震烈度指地震在該地點造成的震動程度,地震的發生處稱為震源,其投影至地表的位置為震中。.

新!!: 振动和地震 · 查看更多 »

共振

共振點(聲學稱為共鳴)是指當一種物理系統在特定頻率底下,比其他頻率以更大的振幅做振動的情形;此些特定頻率稱之為共振頻率在共振頻率下,很小的週期驅動力便可產生巨大的振動,因為系統儲存有振動的能量當阻尼。有很微小的機會,共振頻率大約與系統自然頻率或稱固有頻率相等,後者是自由振盪時的頻率。.

新!!: 振动和共振 · 查看更多 »

倒数

數學上,一个数\displaystyle x的倒数(reciprocal),或稱乘法逆元(multiplicative inverse),是指一個与\displaystyle x相乘的积为1的数,记为\displaystyle \tfrac或\displaystyle x^。在抽象代数中,倒数所对应的抽象化概念是乘法群的某个元素的“乘法逆”,也就是相对于群中“乘法”运算的逆元素。注意这个名词只当相应的群中的运算被称为“乘法”后才使用。如果群中的运算被称为“加法”,那么同样的概念称为“加法逆”。乘法逆的具体定义可以参见群的逆元素概念。 汉语中,名词倒数一般用来表示数字的乘法逆,一般在各种数域如:有理数、实数、复数,以及模n的同余类所构成的乘法群中使用。在复数域(实数域)中,每个除了0以外的复数(实数)都存在倒数:只要用某个数自身除1(也就是说用1除以某个数),即可得到它的倒数。用数学记号表示的话: 每个复数(实数)只有一个倒数。一般来说,并不是对所有的代数结构中的乘法运算,每个元素都存在其乘法逆,如对矩阵乘法来说,秩小于阶数的矩阵就没有乘法逆。一个环中的一个元素有乘法逆当且仅当它是可逆元,而它的乘法逆是唯一的当且仅当它不是一个零因子,或者说当它是一个正则元。每个非零元素都有乘法逆的环称为除环。每个非零元素都至多有一个乘法逆的环称为无零因子环。.

新!!: 振动和倒数 · 查看更多 »

状态

态可以指:.

新!!: 振动和状态 · 查看更多 »

石英钟

石英钟是一种基于放置在电子振荡器中石英晶体电压特性的精确时钟。.

新!!: 振动和石英钟 · 查看更多 »

琴弓

弓是弦樂器的一部分,用來令琴弦振動發出聲音。但有些沒有弦的樂器也會用到琴弓,如鋸琴。.

新!!: 振动和琴弓 · 查看更多 »

秋千

-- (又寫作--。南方,特別是廣東話又稱打韆鞦)是靠一人或多人在游戏者的背后,推动游戏者,或自己利用绳索的前后摆盪,让游戏者的身体随秋千上下起落的一种游戏。通常兩條绳索末端繫一块木板、輪胎等,人坐上去会比较舒服。多人玩时会相互比,谁摆动的幅度最大。 盪鞦韆可以使人心曠神恰,鍛煉身體和意志,培養勇敢精神,已成為兒童的專項活動,常見於幼兒園、小學的操場旁,或公園、遊樂園中。.

新!!: 振动和秋千 · 查看更多 »

簡諧運動

谐运动(或简谐振动、谐振、SHM(Simple Harmonic Motion))即是最基本也是最简单的一种机械振动。当某物体进行简谐运动时,物体所受的力跟位移成正比,并且力总是指向平衡位置。 如果用F表示物体受到的回復力,用x表示物体对于平衡位置的位移,根据虎克定律,F和x成正比,它们之间的关系可用下式来表示: 式中的k是回复力与位移成正比的比例系数;负号的意思是:回复力的方向总跟物体位移的方向相反。 根据牛顿第二定律,F.

新!!: 振动和簡諧運動 · 查看更多 »

系統

系統(system;system;système;sistema)泛指由一群有關聯的個體組成,根據某種規則運作,能完成個別元件不能單獨完成的工作的群體。 系統分為自然系統與人為系統兩大類。.

新!!: 振动和系統 · 查看更多 »

线性方程组

线性方程组是数学方程组的一种,它符合以下的形式: 其中的a_, \, a_以及b_, \, b_等等是已知的常数,而x_, \, x_等等则是要求的未知数。 如果用线性代数中的概念来表达,则线性方程组可以写成: 這裡的A是m×n 矩陣,x是含有n个元素列向量,b是含有m 个元素列向量。 A.

新!!: 振动和线性方程组 · 查看更多 »

缩放

在欧几里得几何中,均匀缩放是放大或缩小物体的线性变换;缩放因子在所有方向上都是一样的;它也叫做位似变换。均匀缩放的结果相似(在几何意义上)于原始的物体。 更一般的是在每个坐标轴方向上的有单独缩放因子的缩放;特殊情况是方向缩放(在一个方向上)。形状可能变化,比如矩形可能变成不同形状的矩形,还可能变成平行四边形(保持在平行于轴的线之间的角度,但不保持所有的角度)。.

新!!: 振动和缩放 · 查看更多 »

热力学第一定律

熱力學第一定律(First Law of Thermodynamics)是熱力學的四條基本定律之一,能量守恒定律對非孤立系統的擴展。此時能量可以以功W或熱量Q的形式傳入或傳出系統。即: 式中\Delta E_为系统内能的变化量,若外界对该系统做功,则W为正值,反之为负值。 写成微分形式为:.

新!!: 振动和热力学第一定律 · 查看更多 »

热力学第二定律

热力学第二定律(second law of thermodynamics)是热力学的三条基本定律之一,表述热力学过程的不可逆性——孤立系统自發地朝著熱力學平衡方向──最大熵狀態──演化,同样地,第二类永动机永不可能实现。 這一定律的歷史可追溯至尼古拉·卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。定律有许多种表述,其中最具代表性的是克劳修斯表述(1850年)和开尔文表述(1851年),这些表述都可被证明是等价的。定律的数学表述主要借助魯道夫·克勞修斯所引入的熵的概念,具体表述为克劳修斯定理。 虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到解释。 这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。定律本身可作为过程不可逆性及时间流向的判据。而路德维希·玻尔兹曼对于熵的微观解释——系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等。.

新!!: 振动和热力学第二定律 · 查看更多 »

相位

位(phase),是描述訊號波形變化的度量,通常以度(角度)作為單位,也稱作相角或相。當訊號波形以週期的方式變化,波形循環一周即為360º。常應用在科學領域,如數學、物理學、電學等。.

新!!: 振动和相位 · 查看更多 »

相关

在概率论和统计学中,相关(Correlation,或称相关系数或关联系数),显示两个随机变量之间线性关系的强度和方向。在统计学中,相关的意义是用来衡量两个变量相对于其相互独立的距离。在这个广义的定义下,有许多根据数据特点而定义的用来衡量数据相关的系数。.

新!!: 振动和相关 · 查看更多 »

E (数学常数)

-- e,作为數學常數,是自然對數函數的底數。有時被稱為歐拉數(Euler's number),以瑞士數學家歐拉命名;還有個較少見的名字納皮爾常數,用來紀念蘇格蘭數學家約翰·納皮爾引進對數。它是一个无限不循环小数,數值約是(小數點後20位,):.

新!!: 振动和E (数学常数) · 查看更多 »

静止

#重定向 相對靜止.

新!!: 振动和静止 · 查看更多 »

頻率

频率(Frequency)是单位时间内某事件重复发生的次数,在物理学中通常以符号f 或\nu表示。采用国际单位制,其单位为赫兹(英語:Hertz,简写为Hz)。设\tau时间内某事件重复发生n次,则此事件发生的频率为f.

新!!: 振动和頻率 · 查看更多 »

蠕变

潛變(Creep),也稱蠕變,是在應力作用下固体材料缓慢且永久的變形。它的发生是低于材料屈服强度的應力长时间作用的结果。当材料长时间处于高温或者在熔点附近时,潛變会更加剧烈。潛變速率常常随着温度升高而加剧。 潛變速率与材料性质、加载时间、加载温度和加载结构應力有关。取决于加载應力和它的持续时间,这种變形可能變得很大,以至于一些部件可能会失效。例如,涡轮叶片的潛變将会使叶片与外壳相接触,导致叶片的失效。潛變常常是工程上和冶金上评价在高應力或高温下工作的部件所需要关注的。潛變可能是组成失效模型的變形机制,也可能不是。混凝土中适中的潛變有时是受欢迎的,因为它会减轻可能另外引发断裂的拉應力。 不像脆性断裂,潛變變形并不会随着應力作用而突然出现。相反,應變会在长时间的應力作用下积累。因此,潛變是一种“与时间相关的”變形。 潛變變形发生的温度范围因材料不同而不同。例如,钨需要几千度才能发生潛變變形,然而冰可以在冰点下潛變。通常,在金属熔点的大约30%和陶瓷熔点的40%-50%时,潛變的影响开始變得显著。事实上,任何材料在接近其熔点的时候都会发生潛變。由于潛變的最低温度和熔点有关,潛變可以在相对较低的温度下在一些材料上发生,如塑料和低熔点金属,包括许多焊料。室温潛變可以很明显的发生在旧的铅热水管上。冰河流也是個常見的潛變例子。 除了在需要保持高温的系统中,例如核电站、喷气发动机和热交换机,对于许多日常用品的设计,考虑潛變變形也是很重要的。例如,金属纸夹比塑料强度大,因为塑料在室温下发生潛變。老化的玻璃窗常常错误的被用来当成这个现象的例子:可观测的潛變仅仅在高于玻璃转變温度(900°F/500°C)下发生。尽管玻璃在正确的条件下展现出潛變,然而旧窗户上明显的下垂现象可能来自废弃的制造工艺,例如用于制造冕牌玻璃而引发不均一厚度的工艺。 一个潛變變形應用的例子是钨灯丝的设计。支柱之间灯丝圈的下垂随时间不断增长,原因是灯丝自身重量而引发的潛變變形。如果过多的變形发生,邻近圈的灯丝相互接触,将引发短路和局部过热,从而很快导致灯丝失效。因此灯丝形状和支柱被设计用来限制由灯丝重量引发的應力,而且一种掺杂了氧在晶界中的特殊的钨被用来减缓Coble潛變的速率。 在蒸汽涡轮发电站中,管道在高温(566°C/1050°F)和高压(24.1MPa/3500psi或更高)下运输蒸汽。在喷气发动机中,温度可以达到1400°C/2550°F,会在涡轮叶片上引发潛變變形。因此,理解材料的潛變變形行为是很重要的。.

新!!: 振动和蠕变 · 查看更多 »

风是大规模的气体流动现象。在地球上,风是由空气的大范围运动形成的。在外层空间,太阳风是气体或带电粒子从太阳到太空的流动,而行星风则是星球大气层的轻分子经释气作用飘散至太空。风通常可按、速度、力度、肇因、产生区域及其影响来划分。在太阳系的海王星和木星上,曾观测到迄今为止于星球上产生的最为强烈的风。 在气象学中,经常用风的強度和风的方向来描述风。短期的高速的风的爆发被成为阵风。极短时间内(大约1分钟)的强风被称为。长时间的风可根据它们得平均强度被称呼不同的名字,比如微风、烈風、风暴、飓风、台风等。风发生的时间范围很大,有--持续几十分钟的雷暴气流,有可持续几小时的因地表加热而产生的局地微风,也有因地球上不同气候区内吸收太阳能量不同而产生的全球性的风。大尺度大氣環流产生的两个主要原因是赤道和极地之间的所受不同的加热,以及行星的旋转(科里奥利效应)。在热带,热低压和高原可以驱动季风环流。在海岸地区,海陆风循环在局地的风中占主要。在有起伏地形的地区,山谷风在局地风中占主要。 在人类文明历史中,风引发了神话,影响过历史,扩展了运输和战争的范围,为机械功,电和娱乐提供了能源。风推动着帆船在地球的大海中航行。热气球利用风可作短途旅行,动力飞行可以利用风来增加升力和减少燃料消耗。一些天气现象引发的风切变区域可以导致航空器处于危险的境况。当风变强时,会毁坏树木和人造建筑。 风还可以通过不同的风成过程(比如沃土的形成,黄土的形成)和侵蚀作用改变地表形态。盛行风可以将大沙漠的黄沙从源头带到很远的地方;粗糙的地形可以将风加速,因为对当地的影响很大,世界上一些区域的和沙尘暴相关的风都有自己的名字。风可以影响野火的蔓延。 很多种植物的种子是依靠风来散布,这些物种的生存和分布受风影响很大。一些飞行类昆虫的种群大小也受风影响。当风和低温同时发生时,对家畜会有不利影响。风还可以影响动物的食物的储存,以及它们的捕猎和自保的策略。.

新!!: 振动和風 · 查看更多 »

解是漢詩的章節,一章即為一解,一首詩可分為多「解」。 在兩漢、魏晉的樂府詩,解是音樂上的用語,指樂曲的一章。有的詩歌會標示分為多少解,也有的不分解。分解的詩歌,大抵每一解都反覆歌唱同一首樂曲;而不分解的,即使長篇,由始至終都是樂曲一首,不重複。詩歌換韻之處,往往也在詩句轉入另一新「解」的地方。原則上,詩歌以4句為一解,律詩8句,一般分為2解。明末清初金聖嘆提出新說,4句稱一解之外,以2句為「半解」;詩歌意思的起落,往往亦相當於解的起落。例如古詩十九首〈青青河畔草〉:「青青河畔草,鬱鬱園中柳。盈盈樓上女,皎皎當窗牖。娥娥紅粉粧,纖纖出素手。」頭兩句專寫景,是為「半解」;第3-6句,寫的是美人,則是另一「解」。.

新!!: 振动和解 · 查看更多 »

角频率

在物理学(特别是力学和电子工程)中,角频率ω有时也叫做角速率、角速度标量,是对旋转快慢的度量,它是角速度向量\vec的模。角频率的国际单位是弧度每秒。由于弧度是无量纲的,所以角频率的量纲为T −1。 因为旋转一周的弧度是2π,所以.

新!!: 振动和角频率 · 查看更多 »

计量单位

單位系指給定的某一基礎物理量,單位的給定皆屬人為。常伴隨著某種表示法,例如公尺、秒、公斤等,以方便人們在溝通某一量時有共通的概念。 计量单位(度量單位)为单位的具体统称,为人类计算一个数额的方法。例如,在數字中,单位一般为“1”;在计算长度的时候,单位可以是“纳米”、“毫米”、“-zh-hans:厘米;zh-hant:公分;-(或作--)”、“分米”、“米”、“千米”、“光年”等;在计算时间的时候,单位可以是“微秒”、“秒”、“分钟”、“时”、“日”、“星期”、“月”、“年”、“世纪”等。.

新!!: 振动和计量单位 · 查看更多 »

谐波

谐波是一个数学或物理学概念,是指周期函数或周期性的波形中能用常数、与原函数的最小正周期相同的正弦函数和余弦函数的线性组合表达的部分。.

新!!: 振动和谐波 · 查看更多 »

谐振

#重定向 簡諧運動.

新!!: 振动和谐振 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

新!!: 振动和质量 · 查看更多 »

轉動慣量

在经典力學中,轉動慣量又稱慣性矩(Moment of inertia),通常以I表示,國際單位制為·。轉動慣量是一個物體對於其旋轉運動的慣性大小的量度。一個剛體對於某轉軸的轉動慣量決定了對於這物體繞著這轉軸進行某種角加速度運動所需要施加的力矩。轉動慣量在转动動力學中的角色相當於線性動力學中的質量,描述角動量、角速度、力矩和角加速度等數個量之間的關係。.

新!!: 振动和轉動慣量 · 查看更多 »

近似

近似或是逼近是指一個事物和另一事物類似,但不是完全相同。近似可以用在許多性質上,是指幾乎一様,但沒有完全一様的情形。 近似最常用在數字上,也常用在數學函數、形狀及物理定律中。 在科學上,會將一物理現象轉換為一個有相似結構的模型,當準確的模型難以應用時,會用一個較簡單的模型來近似,簡化中間的計算,例如用球棒模型來近似實際化學分子中原子的分佈。當由於資訊不完整,無法確切陳述特定事物時,也可以用近似的方式處理。 近似的種類會依照可以取得的資訊、需要的準確程度及使用近似可以節省的時間及精力而定。.

新!!: 振动和近似 · 查看更多 »

能可以指:.

新!!: 振动和能 · 查看更多 »

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

新!!: 振动和能量 · 查看更多 »

阶可能指:.

新!!: 振动和阶 · 查看更多 »

阻尼

阻尼(damping)是指任何振动系统在振动中,由于外界作用(如流體阻力、摩擦力等)和/或系统本身固有的原因引起的振动幅度逐渐下降的特性,以及此一特性的量化表征。 在實際振動中,由於摩擦力總是存在的,所以振動系統最初所獲得的能量,在振動過程中因阻力不斷對系統做負功,使得系統的能量不斷減少,振動的強度逐漸減弱,振幅也就越來越小,以至於最後的停止振動,像這樣的因系統的力學能,由於摩擦及轉化成內能逐漸減少,振幅隨時間而減弱振動,稱為阻尼振動。.

新!!: 振动和阻尼 · 查看更多 »

阻尼比

阻尼比(Damping ratio)是工程上的無因次量,描述系統在受到擾動後振盪及衰減的情形。許多系統在受擾動,離開其靜平衡位置時都會振盪,例如吊在彈簧的重物,若用力往上拉再放開,就會上上下下的擺動。在擺動過程中,系統試圖回到平衡位置,不過會出現過沖。有時系統會有損耗(例如摩擦力)會形成系統的阻尼,會使系統的振盪漸漸變小,最後。阻尼比是描述系統的振盪多快可以衰減。 系統的振盪行為出現在許多不同的領域中,例如控制工程、機械工程、結構工程及電機工程等。振盪的物理量可能有很大的不同,振盪的可能是在大風中的建築物,也可能是馬達的速度,但利用正規化、無因次化的分析可以描述這些現象中共通的特性。.

新!!: 振动和阻尼比 · 查看更多 »

赫兹

赫兹(符号:Hz)是频率的国际单位制单位,表示内周期性事件发生的次数。赫兹是以首个用实验验证电磁波存在的科学家海因里希·赫兹命名的,常用于描述正弦波、乐音、无线电通讯以及计算机时钟频率等。.

新!!: 振动和赫兹 · 查看更多 »

叶是高等植物的营养器官,侧边发育自植物的茎的叶原基。叶内含有叶绿体,是植物进行光合作用的主要場所。同时,植物的蒸散作用是通过叶的气孔实现的。 叶只出现在真正的茎上,即只有维管植物才有叶。蕨类、裸子植物和被子植物等所有高等植物都有叶。相对地,苔蘚植物、藻类、真菌和地衣则没有叶。在这些扁平体(Thallus)中只能找到与叶相似的结构,但只能作为类似物(Analoga)。 但有人认为,上述的叶的外延,只是狭义的。广义的叶应该指所有能行光合作用的组织结构。但有一部分的茎為了不讓水分被蒸散掉,而演變出如仙人掌般針狀的葉子。 完全叶包含三部分,叶片,叶柄和托叶。叶片指的是完全叶上扁平的主体结构。它会尽可能地吸收阳光,并通过气孔调节植物体内水分和温度。在叶片的纵切面可见三种主要结构:表皮組織(即上、下表皮),葉肉組織(包括柵欄組織和海綿組織),及維管束組織。 叶柄是连接叶片与茎节的部分。托叶则着生于叶柄基部两侧或叶腋处,细小,早落。不同的植物种类,托葉的形态也不同。例如豌豆有着大的叶片状托叶,而洋槐和酸枣的托叶则是针形,山櫻花的托葉為羽狀。其作用是保护幼叶。 而叶的形态也是多种多样的。从非常原始的针状小型叶发展出各种各样形态的大型叶。有些叶,已不再行使叶的功能(光合作用和蒸腾作用),而成为花瓣,花刺,叶卷须和保护幼叶的牙鳞。.

新!!: 振动和葉 · 查看更多 »

蒸汽機車

蒸汽機車,又稱蒸汽火車,是以蒸汽机做為動力來源的鐵路機車,也是鐵路機車最早的發展類別。.

新!!: 振动和蒸汽機車 · 查看更多 »

重覆度

重覆度(multiplicity)是一數學名詞,多重集中某一元素的重覆度是指此元素在多重集中出現的次數。例如代数方程中特定根出現的次數。 重覆度的標示可以方便多重集的計數,若元素考慮其重覆度計數,重覆度為1的會算為1個,重覆度為2的會算為2個。若不考慮重覆度,會以「計算相異元素個數」來說明。不過若是考慮非多重集的一般集合(每個元素最多只出現一次),沒有重覆度,計算元素個數時就不會特別強調「相異」。.

新!!: 振动和重覆度 · 查看更多 »

自由度

自由度可以指:.

新!!: 振动和自由度 · 查看更多 »

週期

週期(Period)指的是完成往復運動一次所需的時間,物理學上通常以T表示,單位為s。 週期為頻率(物理學上通常以\,f\,表示)的倒數:T.

新!!: 振动和週期 · 查看更多 »

柱是建築物中垂直的主結構件,承托在它上方物件的重量。 在中國木建築中,橫樑直柱,柱陣列負責承托樑架結構及其他部分的重量,如屋檐,在主柱與地基間,常建有柱础。另外,亦有其他較小的柱,不置於地基之上,而是置於樑架上,以承托上方物件的重量,再透過樑架結構,把重量傳至主柱之上。例如脊瓜柱或蜀柱,是在樑架之上承托部分屋檐的重量。 中国古代的柱子多数为木造,属于大木作范围;间有石柱。明清时期,东南的一些地方普遍用石材或砖材制作檐柱,以取得更好的耐久性。为防水、防潮,木柱下垫以石质柱础,有时会在柱础和柱之间再增加一层石制或木制的柱櫍。.

新!!: 振动和柱 · 查看更多 »

欧拉公式

欧拉公式(Euler's formula,又稱尤拉公式)是在複分析领域的公式,将三角函数與複數指数函数相关联,因其提出者莱昂哈德·欧拉而得名。尤拉公式提出,對任意實数x,都存在 其中e是自然對数的底數,i是虛數單位,而\cos和\sin則是餘弦、正弦對應的三角函数,参数x則以弧度为单位。這一複數指數函數有時還寫作\operatorname(x)(cosine plus i sine,余弦加i正弦)。由於該公式在x為複數時仍然成立,所以也有人將這一更通用的版本稱為尤拉公式。 当 x.

新!!: 振动和欧拉公式 · 查看更多 »

比例

在数学中,比例是兩個非零數量y與x之間的比較關係,記為y:x \; (x, y \in \mathbb),在計算時則更常寫為\frac或y/x。若两个變量的关系符合其中一个量是另一个量乘以一个常数(y.

新!!: 振动和比例 · 查看更多 »

水平

水平可以指:.

新!!: 振动和水平 · 查看更多 »

永动机

永动机是一类所謂不需外界输入能源、能量或在仅有一个热源的条件下便能够不断运动并且对外做功的机械。历史上人们曾经热衷于研制各种类型的永动机,其中包括达芬奇、焦耳这样的学术大師。在热力学体系建立后,學界認定永动机相悖於热力学基本原理的设想,而將之從正統學術界中排除。然而永动机的研究者始終未曾間斷。从一个侧面也可以认为,人类对永动机的热情以及制造永动机的种种实践,推动了热力学体系的建立和机械制造技术的进步。 1775年法国科学院通过决议,宣布永不接受永动机。现在美国专利及商标局严禁将专利证书授予永动机类申请。 2017年證實了時間晶體的存在,其原子運動無需任何外界能量來維持,符合「永動」的字面定義,但其能量在加入額外的能量前不可能被利用。如果時間晶體的熵不夠高,晶體可能會四散成粒子,因為後者才有更高的熵值,雖然這可能需要很久的時間。.

新!!: 振动和永动机 · 查看更多 »

振动

振动(vibration),指一个物体相对于静止参照物或处于平衡状态的物体的往复运动。一般来说振动的基础是一个系统在两个能量形式间的能量转换,振动可以是周期性的(如单摆)或随机性的(如轮胎在碎石路上的运动)。.

新!!: 振动和振动 · 查看更多 »

振幅

振幅是在波动或振动中距离平衡位置或静止位置的最大位移。符号A,单位米。振幅屬於標量,振幅永为非負值(≥0)。 在下图中,位移“y”表示波的振幅。 系統振動中最大動態位移,稱為振幅。 概念辨析(振幅≠幅度):.

新!!: 振动和振幅 · 查看更多 »

振荡器

#重定向 电子振荡器.

新!!: 振动和振荡器 · 查看更多 »

方位

方位是各方向的位置。四方位或基本方位就是東南西北.

新!!: 振动和方位 · 查看更多 »

无限

#重定向 无穷.

新!!: 振动和无限 · 查看更多 »

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

新!!: 振动和时间 · 查看更多 »

摩擦力

摩擦力(英語:friction)指两个表面接触的物体相对滑动时抵制它们的相对移动的力,是经典力学的一個名詞。广义地,物体在液体和气体中运动时也受到摩擦力。 摩擦力產生的成因:.

新!!: 振动和摩擦力 · 查看更多 »

摩擦系数

两固体表面之间的摩擦力与正向压力成正比,这个比值叫做摩擦系数。摩擦系数由滑动面的性质、粗糙度和(可能存在的)润滑剂所决定。滑动面越粗糙,摩擦系数越大。 物体间的摩擦系数分为两种,一种是滑动摩擦系数,另一种为最大静摩擦力系数,在数值上,后者略大于前者。 另外,如果两物体间的相对速度较大,那么滑动摩擦系数还和相对速度大小有关。 摩擦系数通常用摩擦角法测定:将两物体中的一个倾斜放好做为斜面,让另一物体沿斜面滑下,逐渐减小倾角θ至上面的物体可以匀速下滑,再根据公式: mgsinθ0.

新!!: 振动和摩擦系数 · 查看更多 »

擺是一種實驗儀器,可用來展現種種力學現象。最基本的擺由一條繩或竿,和一個錘組成。錘繫在繩的下方,繩的另一端固定。當推動擺時,錘來回移動。擺可以作一個計時器。.

新!!: 振动和擺 · 查看更多 »

拱為常見建築结构之一,型態定義為中央上半成圓弧曲線。拱早期經常運用於跨逕大的橋樑或門首。又可分為箱形拱、圆弧拱、雙曲拱、肋拱、桁架拱、剛架拱等。近年來,各國於諸如拱橋的設計上,除了講究安全實用外,也強調拱軸線優化,連拱計算、拱式建築荷載橫向分佈,使各種形式拱式建築於完善。 拱最早是出現在公元前二千年的美索不达米亚的磚建築,不過一直到古羅馬時期才開始有系統的將拱應用在許多建築結構中。.

新!!: 振动和拱 · 查看更多 »

晶体

晶体是原子、离子或分子按照一定的周期性,在结晶过程中,在空间排列形成具有一定规则的几何外形的固体。 晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶物质在一定的合适条件下也可以转变成晶体。 晶体内部原子或分子排列的三维空间周期性结构,是晶体最基本的、最本质的特征,并使晶体具有下面的通性:.

新!!: 振动和晶体 · 查看更多 »

重定向到这里:

振子振動机械振动

传出传入
嘿!我们在Facebook上吧! »