徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

拉普拉斯变换和线性时不变系统理论

快捷方式: 差异相似杰卡德相似系数参考

拉普拉斯变换和线性时不变系统理论之间的区别

拉普拉斯变换 vs. 线性时不变系统理论

拉普拉斯变换(Laplace transform)是应用数学中常用的一种积分变换,又名拉氏轉換,其符號為 \displaystyle\mathcal \left\。拉氏變換是一個線性變換,可將一個有引數實數 t(t \ge 0) 的函數轉換為一個引數為複數 s 的函數: 拉氏變換在大部份的應用中都是對射的,最常見的 f(t) 和 F(s) 組合常印製成表,方便查閱。拉普拉斯变换得名自法國天文學家暨數學家皮埃尔-西蒙·拉普拉斯(Pierre-Simon marquis de Laplace),他在機率論的研究中首先引入了拉氏變換。 拉氏變換和傅里叶变换有關,不過傅里叶变换將一個函數或是信號表示為許多弦波的疊加,而拉氏變換則是將一個函數表示為許多矩的疊加。拉氏變換常用來求解微分方程及積分方程。在物理及工程上常用來分析線性非時變系統,可用來分析電子電路、諧振子、光学仪器及機械設備。在這些分析中,拉氏變換可以作時域和頻域之間的轉換,在時域中輸入和輸出都是時間的函數,在頻域中輸入和輸出則是複變角頻率的函數,單位是弧度每秒。 對於一個簡單的系統,拉氏變換提供另一種系統的描述方程,可以簡化分析系統行為的時間。像時域下的線性非時變系統,在頻域下會轉換為代數方程,在時域下的捲積會變成頻域下的乘法。. 线性非时变系统理论俗称LTI系统理论,源自应用数学,直接在核磁共振頻譜學、地震学、电路、信号处理和控制理论等技术领域运用。它研究的是线性、非时变系统对任意输入信号的响应。虽然这些系统的轨迹通常会随时间变化(例如声学波形)来测量和跟踪,但是应用到图像处理和场论时,LTI系统在空间维度上也有轨迹。因此,这些系统也被称为线性非時變平移,在最一般的范围理论给出此理论。在离散(即采样)系统中对应的术语是线性非時變平移系统。由电阻、电容、电感组成的电路是LTI系统的一个很好的例子。.

之间拉普拉斯变换和线性时不变系统理论相似

拉普拉斯变换和线性时不变系统理论有(在联盟百科)16共同点: 卷积双边拉普拉斯变换复数 (数学)实数导数应用数学微分方程信号处理傅里叶变换冲激响应因果系统線性系統狄拉克δ函数Lp空间控制理论時域

卷积

在泛函分析中,捲積、疊積、--積或旋積,是通过两个函数f和g生成第三个函数的一种数学算子,表徵函数f与经过翻转和平移的g的乘積函數所圍成的曲邊梯形的面積。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑動平均”的推广。.

卷积和拉普拉斯变换 · 卷积和线性时不变系统理论 · 查看更多 »

双边拉普拉斯变换

双边拉普拉斯变换是一種积分变换,其形式類似機率中的動差生成函數,双边拉普拉斯变换和傅立葉變換、Mellin 變換及單邊的拉普拉斯变换有緊密的關係。若ƒ(t)為實數t的實數函數或是複變函數,t可以為任意實數,則双边拉普拉斯变换可以用以下的積分表示: \int_^\infty e^ f(t) \,dt.

双边拉普拉斯变换和拉普拉斯变换 · 双边拉普拉斯变换和线性时不变系统理论 · 查看更多 »

复数 (数学)

複數,為實數的延伸,它使任一多項式方程式都有根。複數當中有個「虛數單位」i,它是-1的一个平方根,即i ^2.

复数 (数学)和拉普拉斯变换 · 复数 (数学)和线性时不变系统理论 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

实数和拉普拉斯变换 · 实数和线性时不变系统理论 · 查看更多 »

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

导数和拉普拉斯变换 · 导数和线性时不变系统理论 · 查看更多 »

应用数学

應用數學(Applied Mathematics)是以應用為目的的明確的數學理論和方法的總稱,研究如何應用數學知識到其他範疇(尤其是科學)的數學分支,可以說是純數學的相反,應用純數學中的結論擴展到物理學等其他科學中,應用數學的發展是以科學為依據,作為科學研究的後盾。包括線性代數、矩陣理論、向量分析、複變分析、微分方程、拉普拉斯變換、傅里葉分析、數值分析、概率论、數理統計、運籌學、博弈論、控制理論、組合數學、資訊理論等許多數學分支,也包括從各種應用領域中提出的數學問題的研究。而大部分應用數學是以作為物理分析的工具。計算數學有時也可視為應用數學的一部分。應用數學大部分的教學範疇都是以物理的模型為基礎進行分析,當中或許搭配了各種數學工具,就為了更貼近物理的系統。 圖論應用在網絡分析,拓撲學在電路分析上的應用,群論在結晶學上的應用,微分幾何在規範場上的應用,自動控制理論在計算上的應用,黎曼幾何應用於相對論,數理邏輯應用於計算機,最小二乘法應用於飛機起降時自動控制,利用數字合成計算機輔助的X射線斷層成像技術(1979年數學家獲得諾貝爾醫學獎)數論應用在密碼學,博弈論、概率論、統計學應用在經濟學,線性規劃用於生產安排調度,都可見數學在不同範疇的應用。.

应用数学和拉普拉斯变换 · 应用数学和线性时不变系统理论 · 查看更多 »

微分方程

微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.

微分方程和拉普拉斯变换 · 微分方程和线性时不变系统理论 · 查看更多 »

信号处理

在计算机科学、药物分析、电子学等学科中,信号处理(signal processing)是指对信号表示、变换、运算等进行处理的过程。 信号处理可以用于沟通人类之间,或人与机器之间的联系;用以探测我们周围的环境,并揭示出那些不易观察到的状态和构造细节,以及用来控制和利用能源与信息.例如,我们可能希望分开两个或多个多少有些混在一起的信号,或者想增强信号模型中的某些成分或参数。 几十年来,信号处理在诸如语音与資料通訊、生物医学工程、声学、声呐、雷达、地震、石油勘探、仪器仪表、机器人、日用电子产品以及其它很多的这样一些广泛的领域内起着关键的作用。.

信号处理和拉普拉斯变换 · 信号处理和线性时不变系统理论 · 查看更多 »

傅里叶变换

傅里叶变换(Transformation de Fourier、Fourier transform)是一种線性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。 经傅里叶变换生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦称频谱。在許多情況下,傅里叶变换是可逆的,即可通过 \hat f 得到其原函数 f。通常情况下,f 是实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅和相位。 “傅里叶变换”一词既指变换操作本身(将函数 f 进行傅里叶变换),又指该操作所生成的复数函数(\hat f 是 f 的傅里叶变换)。.

傅里叶变换和拉普拉斯变换 · 傅里叶变换和线性时不变系统理论 · 查看更多 »

冲激响应

在信号处理中,脈衝響應(Impulse response)一般是指系统在输入为单位冲激函数时的输出(响应)。对于连续时间系统来说,冲激响应一般用函数h(t;\tau)来表示,相对应的输入信号,也就是单位冲激函数满足狄拉克δ函数的形式,其函数定义如下: 并且,在从负无穷到正无穷区间内积分为1: 在输入为狄拉克δ函数时,系统的冲激响应h(t)包含了系统的所有信息。所以对于任意输入信号x(t),可以用连续域卷积的方法得出所对应的输出y(t)。也就是: 对于离散时间系统来说,冲激响应一般用序列h来表示,相对应的离散输入信号,也就是单位脉冲函数满足克罗内克δ的形式,在信号与系统科学中可以定义函数如下: 同样道理,在输入为\delta时,离散系统的冲激响应h包含了系统的所有信息。所以对于任意输入信号x,可以用离散域卷积(求和)的方法得出所对应的输出信号y。也就是:.

冲激响应和拉普拉斯变换 · 冲激响应和线性时不变系统理论 · 查看更多 »

因果系统

因果系统,称一个系统是“因果”的,是指此系统满足因果性。即对輸入的响应不可能在此輸入到达的时刻之前出现;也就是说系统的输出仅与当前与过去的输入有关,而与将来的输入无关。因此,因果系统是“物理可实现的”。.

因果系统和拉普拉斯变换 · 因果系统和线性时不变系统理论 · 查看更多 »

線性系統

線性系統是一數學模型,是指用線性運算子組成的系統。相較於非線性系統,線性系統的特性比較簡單。例如以下的系統即為一線性系統: 由於線性系統較容易處理,許多時候會將系統理想化或簡化為線性系統。線性系統常應用在自動控制理論、信號處理及電信上。像無線通訊訊號在介質中的傳播就可以用線性系統來模擬。 線性系統需滿足線性的特性,若線性系統還滿足非時變性(即系統的輸入信號若延遲τ秒,那麼得到的輸出除了這τ秒延時以外是完全相同的),則稱為線性時不變系統。.

拉普拉斯变换和線性系統 · 線性系統和线性时不变系统理论 · 查看更多 »

狄拉克δ函数

在科學和數學中,狄拉克函數或簡稱函數(譯名德爾塔函數、得耳他函數)是在實數線上定義的一個廣義函數或分佈。它在除零以外的點上都等於零,且其在整個定義域上的積分等於1。函數有時可看作是在原點處无限高、无限细,但是总面积为1的一個尖峰,在物理上代表了理想化的質點或点电荷的密度。 從純數學的觀點來看,狄拉克函數並非嚴格意義上的函數,因為任何在擴展實數線上定義的函數,如果在一個點以外的地方都等於零,其總積分必須為零。函數只有在出現在積分以內的時候才有實質的意義。根據這一點,函數一般可以當做普通函數一樣使用。它形式上所遵守的規則屬於的一部分,是物理學和工程學的標準工具。包括函數在內的運算微積分方法,在20世紀初受到數學家的質疑,直到1950年代洛朗·施瓦茨才發展出一套令人滿意的嚴謹理論。嚴謹地來說,函數必須定義為一個分佈,對應於支撐集為原點的概率測度。在許多應用中,均將視為由在原點處有尖峰的函數所組成的序列的極限(),而序列中的函數則可作為對函數的近似。 在訊號處理上,函數常稱為單位脈衝符號或單位脈衝函數。δ函數是對應於狄拉克函數的離散函數,其定義域為離散集,值域可以是0或者1。.

拉普拉斯变换和狄拉克δ函数 · 狄拉克δ函数和线性时不变系统理论 · 查看更多 »

Lp空间

在数学中,Lp空间是由p次可积函数组成的空间;对应的ℓp空间是由p次可和序列组成的空间。它們有時叫做勒貝格空間,以昂利·勒貝格命名,儘管依據它們是首先介入。在泛函分析和拓扑向量空间中,他们构成了巴拿赫空间一类重要的例子。 Lp空间在工程学领域的有限元分析中有应用。.

Lp空间和拉普拉斯变换 · Lp空间和线性时不变系统理论 · 查看更多 »

控制理论

控制理論是工程學與數學的跨領域分支,主要處理在有輸入信號的動力系統的行為。系統的外部輸入稱為「參考值」,系統中的一個或多個變數需隨著參考值變化,控制器處理系統的輸入,使系統輸出得到預期的效果。 控制理論一般的目的是藉由控制器的動作讓系統穩定,也就是系統維持在設定值,而且不會在設定值附近晃動。 連續系統一般會用微分方程來表示。若微分方程是線性常係數,可以將微分方程取拉普拉斯轉換,將其輸入和輸出之間的關係用傳遞函數表示。若微分方程為非線性,已找到其解,可以將非線性方程在此解附近進行線性化。若所得的線性化微分方程是常係數的,也可以用拉普拉斯轉換得到傳遞函數。 傳遞函數也稱為系統函數或網路函數,是一個數學表示法,用時間或是空間的頻率來表示一個線性常係數系統中,輸入和輸出之間的關係。 控制理论中常用方塊圖來說明控制理论的內容。.

拉普拉斯变换和控制理论 · 控制理论和线性时不变系统理论 · 查看更多 »

時域

時域(time domain)是描述數學函數或物理信號對時間的關係。例如一個信號的時域波形可以表達信號隨著時間的變化。 若考慮離散時間,時域中的函數或信號,在各個離散時間點的數值均為已知。若考慮連續時間,則函數或信號在任意時間的數值均為已知。 在研究時域的信號時,常會用示波器將信號轉換為其時域的波形。.

拉普拉斯变换和時域 · 時域和线性时不变系统理论 · 查看更多 »

上面的列表回答下列问题

拉普拉斯变换和线性时不变系统理论之间的比较

拉普拉斯变换有74个关系,而线性时不变系统理论有53个。由于它们的共同之处16,杰卡德指数为12.60% = 16 / (74 + 53)。

参考

本文介绍拉普拉斯变换和线性时不变系统理论之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »