我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

恩里科·费米和愛德華·泰勒

快捷方式: 差异相似杰卡德相似系数参考

恩里科·费米和愛德華·泰勒之间的区别

恩里科·费米 vs. 愛德華·泰勒

恩里科·费米(Enrico Fermi;),美籍意大利裔物理学家。他对量子力学、核物理、粒子物理以及统计力学都做出了杰出贡献,并参与创建了世界首个核反应堆,芝加哥1号堆。他还是原子弹的设计师和缔造者之一。 费米拥有数项核能相关专利,并在1938年因研究由中子轰击产生的感生放射以及发现超铀元素而获得了诺贝尔物理学奖。他是物理学日渐专门化后少数几位在理论方面和实验方面皆能称作佼佼者的物理学家之一。 费米在统计力学领域做出了他第一个重大理论贡献。物理学家沃尔夫冈·泡利1925年提出了泡利不相容原理。费米依据这一原理对于理想气体系统进行了分析,所得到的统计形式现在通常称作费米–狄拉克统计。现在,人们将遵守不相容原理的粒子称为“费米子”。之后,泡利又对β衰变进行了分析。为使这一衰变过程能量守恒,泡利假设在产生电子时同时会产生一种电中性的粒子。这种粒子当时尚未观测到。费米对于这一粒子的性质进行了分析,得出了它的理论模型,并将其称为“中微子”。他对β衰变进行理论分析而得到的理论模型后来被物理学家称作“”。这一理论后来发展为弱相互作用理论。弱相互作用是四种基本相互作用之一。费米还对由中子诱发的感生放射进行了实验研究。他发现慢中子要比快中子易于俘获,并推导出来描述这一放射过程。在用慢中子对钍核以及铀核进行轰击后,他认为他得到了新的元素。尽管他因为这一发现而获得了诺贝尔物理学奖,但这些元素后来被发现只是核裂变产物。 费米1938年逃离意大利,以避免他的夫人劳拉因为犹太裔出身而受到新通过的波及。他移民至美国,并在第二次世界大战期间参与曼哈顿计划。费米领导了他的团队设计并建造了芝加哥1号堆。这个反应堆1942年12月2日进行了,完成了首次人工自持续链式反应。他之后着手建造位于田纳西州橡树岭的和漢福德區的。这两个反应堆先后于1943年和1944年进行了临界试验。他还领导了洛斯阿拉莫斯国家实验室的F部,致力于实现爱德华·泰勒设计的利用热核反应的“”。1945年7月16日,费米参与了三位一体核试,并利用自己的方法估算了爆炸当量。 战后,费米参与了由罗伯特·奥本海默领导的一般顾问委员会,向美国原子能委员会提供核技术以及政策方面的建议。在得知苏联1949年8月完成了首次原子弹爆炸试验后,费米从道德以及技术层面都极力反对发展氢弹。他1954年在上为奥本海默作证。但奥本海默最终仍是被剥夺了。费米对于粒子物理,特别是π介子以及μ子的相关理论,做出了重要贡献。他推测宇宙射线产生于星际空间中受磁场作用加速的物质。在他身后,有许许多多以他的名字命名的奖项、事物以及研究机构,其中包括:恩里科·費米獎、恩里科·费米研究所、费米国立加速器实验室、费米伽玛射线空间望远镜、以及元素镄。. 愛德華·泰勒(Edward Teller,原匈牙利名為Teller Ede,),出生於匈牙利的美國理論物理學家,被誉为「氫彈之父」,但他本人對此稱號並不在意。除氫彈之外,他對物理學多個領域都有相當的貢獻。 泰勒於1930年代移民美國,並成為曼哈頓計畫的早期成員,參與研制第一顆原子彈。這段期間,他还熱衷於推動研制最早的核聚变武器(氢弹),不過這些構想直到第二次世界大戰結束之後才實現。在一場對於羅伯特·奧本海默背景調查的聽證會上,泰勒對這位過去在洛斯阿拉莫斯的同事,作出一些具爭議性的證詞,此後他在科學界中變得不受歡迎。他持續尋求美國政府與軍事研究機構的援助。他是勞倫斯利福摩爾國家實驗室的建立者之一,並於此機構擔任多年的主管及助理主管。 泰勒晚年對於一些軍事與公共議題,發表了一些具爭議性的技術解決方法,其中包括計畫在阿拉斯加利用熱核爆開鑿港口。他是羅納德·雷根的戰略防禦計劃之熱衷支持者。泰勒的一生因其科學才能、欠佳的人際關係,以及善變的個性而知名。此外也被認為是1964年電影《奇愛博士》的靈感來源之一。.

之间恩里科·费米和愛德華·泰勒相似

恩里科·费米和愛德華·泰勒有(在联盟百科)23共同点: 原子核物理学尼尔斯·玻尔常春藤麥克伊西多·拉比统计力学维尔纳·海森堡罗伯特·奥本海默罗马美国原子能委员会物理学物理学家芝加哥大学诺贝尔物理学奖杨振宁核反应堆核聚变核裂变欧内斯特·劳伦斯洛斯阿拉莫斯国家实验室斯塔尼斯拉夫·乌拉姆曼哈顿计划

原子核物理学

原子核物理学(简称核物理学,核物理或核子物理)是研究原子核成分和相互作用的物理学领域。它主要有三大领域:研究各类次原子粒子与它们之间的关系、分类与分析原子核的结构并带动相应的核子技术进展。原子核物理学最常见的和有名的应用是核能发电的和核武器的技术,但研究还提供了在许多领域的应用,包括核医学和核磁共振成像,材料工程的离子注入,以及地质学和考古学中的放射性碳定年法。 粒子物理学领域是从原子核物理学演变出来的,并且通常被讲授与原子核物理学密切相关。.

原子核物理学和恩里科·费米 · 原子核物理学和愛德華·泰勒 · 查看更多 »

尼尔斯·玻尔

尼尔斯·亨里克·达维德·玻尔(Niels Henrik David Bohr,),丹麦物理学家,1922年因“他對原子結構以及從原子發射出的輻射的研究”而榮获诺贝尔物理学奖。 玻尔發展出原子的玻尔模型。这一模型利用量子化的概念來合理地解释了氢原子的光谱。他还提出量子力学中的互补原理。20世纪20年代至30年代间量子力学及相关课题研究者的活动中心,哥本哈根大学的理论物理研究所(现名尼尔斯·玻尔研究所),也是由玻尔在1921年创办的。 20世纪30年代,玻尔积极帮助来自纳粹德国的流亡者。在纳粹德国占领丹麥后,玻尔与主持德国核武器开发计划的海森堡进行了一次著名会談。他在得知可能被德国人逮捕后,经由瑞典流亡至英国,並於該國参与了合金管工程。這是英国在曼哈顿计划中承擔的任務。战后,他呼吁各国就和平利用核能进行合作。他参与了欧洲核子研究组织及的创建,并于1957年成为的首任主席。为纪念玻尔,国际纯粹与应用化学联合会决定以他的名字命名107号元素,𨨏。.

尼尔斯·玻尔和恩里科·费米 · 尼尔斯·玻尔和愛德華·泰勒 · 查看更多 »

常春藤麥克

常春藤麥克(Ivy Mike)是第一次使用核聚變引爆裝置的行動代號,為美國常春藤行动的一部分。它在1952年11月1日於太平洋的埃內韋塔克環礁引爆。該裝置是第一個通過測試的泰勒-烏拉姆方案核裝置,並且首次成功試驗氫彈。.

常春藤麥克和恩里科·费米 · 常春藤麥克和愛德華·泰勒 · 查看更多 »

伊西多·拉比

伊西多·艾薩克·拉比(Isidor Isaac Rabi,出生名為以色列·拉比,),美國猶太人物理學家,因發現核磁共振(NMR)而獲得1944年的諾貝爾物理學獎,而核磁共振成像(MRI)就是基於核磁共振技術的。他也是其中一個最早研究多腔磁控管的美國科學家,多腔磁腔管可用於微波雷達和微波爐。.

伊西多·拉比和恩里科·费米 · 伊西多·拉比和愛德華·泰勒 · 查看更多 »

统计力学

统计力学(Statistical mechanics)是一個以波茲曼等人提出以最大熵度理論為基礎,藉由配分函數 將有大量組成成分(通常為分子)系統中微觀物理狀態(例如:動能、位能)與宏觀物理量統計規律 (例如:壓力、體積、溫度、熱力學函數、狀態方程式等)連結起來的科学。如氣體分子系統中的壓力、體積、溫度。易辛模型中磁性物質系統的總磁矩、相變溫度、和相變指數。 通常可分為平衡態統計力學,與非平衡態統計力學。其中以平衡態統計力學的成果較為完整,而非平衡態統計力學至今也在發展中。統計物理其中有許多理論影響著其他的學門,如資訊理論中的資訊熵。化學中的化學反應、耗散結構。和發展中的經濟物理學這些學門當中都可看出統計力學研究線性與非線性等複雜系統中的成果。.

恩里科·费米和统计力学 · 愛德華·泰勒和统计力学 · 查看更多 »

维尔纳·海森堡

维尔纳·海森堡(Werner Heisenberg,),德国物理学家,量子力学创始人之一,“哥本哈根学派”代表性人物。1932年,海森堡因為“创立量子力学以及由此导致的氢的同素异形体的发现”而榮获诺贝尔物理学奖。 他对物理学的主要贡献是给出了量子力学的矩阵形式(矩阵力学),提出了“不确定性原理”(又称“海森堡不确定性原理”)和S矩阵理论等。他的《量子论的物理学原理》是量子力学领域的一部經典著作。.

恩里科·费米和维尔纳·海森堡 · 愛德華·泰勒和维尔纳·海森堡 · 查看更多 »

罗伯特·奥本海默

朱利叶斯·罗伯特·奥本海默(Julius Robert Oppenheimer,),美国犹太人物理学家,曼哈顿计划的主要领导者之一,被誉为人类“原子弹之父”。奥本海默曾长期任教于加州大学伯克利分校(1929-1947年),曼哈顿计划期间还创立了洛斯阿拉莫斯国家实验室,第二次世界大战后长期担任普林斯顿高等研究院院长(1947-1966年)。.

恩里科·费米和罗伯特·奥本海默 · 愛德華·泰勒和罗伯特·奥本海默 · 查看更多 »

罗马

羅馬(Roma)是意大利首都及全国政治、经济、文化和交通中心,是世界著名的歷史文化名城,古羅馬文明的發祥地,因建城歷史悠久並保存大量古蹟而被暱稱為「永恆之城」。其位於意大利半島中西部,台伯河下游平原地的七座小山丘上,市中心面積有1200多平方公里。羅馬同時是全世界天主教會的中樞,擁有700多座教堂與修道院、7所天主教大學,市內的梵蒂岡城是罗马主教即天主教会教宗及聖座的駐地。羅馬與佛羅倫斯同為義大利文藝復興中心,現今仍保存有相當豐富的文藝復興與巴洛克風貌;1980年,羅馬的歷史城區被列為世界文化遺產。.

恩里科·费米和罗马 · 愛德華·泰勒和罗马 · 查看更多 »

美国原子能委员会

美國原子能委員會(United States Atomic Energy Commission,AEC)是美國國會在二戰以後立法設立的政府機構,目的是提倡、管理原子能在科學及科技上的和平用途。杜魯門總統在1946年8月1日簽署了將軍方對核能的掌控權轉移到上述文官機構的1946年原子能法案,這個法案在1947年元旦生效。 1946年原子能法案反映了美國國會在戰後對於原子能可以促進世界和平、公共福利及企業自由競爭的樂觀態度,然而杜魯門總統在經過政界、軍界及科學界多方激辯以後才簽署法案。(David Lilienthal)被任命為第一任原子能委員會主席。 國會賦予新的原子能委員會特殊的獨立職權:委員會可以自由任用專家學者,不適用一般文官體制的規定;為了安全考量,美國所有的核生產設備、核反應爐、相關技術資訊及研究結果都由該委員會掌控。美國國家實驗室系統(National Laboratory system)就是建立在曼哈頓計劃的基礎上,而其中阿貢國家實驗室是1946年原子能法案授權執行原子能委員會任務的第一批實驗室之一。 在美國核能管理委員會(Nuclear Regulatory Commission)設立之前,核子管制是屬於原子能委員會的業務。1954年美國國會通過了原子能法案修正案,賦予原子能委員會促進並管制核能的使用的職權,使得商用核能的發展變成可行。於是原子能委員會必須訂定管制標準保護一般民眾的安全,同時又要避免訂定太嚴格的標準限制工業的發展,這是一件很困難的事。而在1960年代許多核管制標準被批評太弱,包括輻射劑量標準、環境保護標準、核反應爐的位置與安全標準。1974年國會終於決定將原子能委員會的業務一分為二,根據1974年(Energy Reorganization Act),核管制業務交由核子管制委員會執行(1975年1月19日開始運作),而促進核能利用的業務交由(Energy Research and Development Administration,後來併入能源部)執行。.

恩里科·费米和美国原子能委员会 · 愛德華·泰勒和美国原子能委员会 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

恩里科·费米和物理学 · 愛德華·泰勒和物理学 · 查看更多 »

物理学家

物理學家是指受物理學訓練、並以探索物質世界的組成和運行規律(即物理學)為目的科學家。研究範疇可細至構成一般物質的微細粒子,大至宇宙的整體,不同的範圍都會有相對的專家。對應於物理學分為理論物理學和實驗物理學,物理学家也可以分為理論物理學家和實驗物理學家。物理學中理論和實驗都是必不可缺的组成部分,所以有时候這樣的分類很難界定,只不過在一個物理學家更偏重理論的情况下,被稱為理論物理學家的例子包括爱因斯坦、海森堡、狄拉克、埃爾溫·薛丁格、尼爾斯·波耳、楊振寧等;而若偏重實驗,則稱為實驗物理學家,例如艾薩克·牛頓、法拉第、亨利·貝克勒、尼古拉·特斯拉、馬克斯·馮·勞厄、約瑟夫·湯姆森、歐內斯特·勞倫斯、吳健雄、威廉·肖克利、朱棣文等。.

恩里科·费米和物理学家 · 愛德華·泰勒和物理学家 · 查看更多 »

芝加哥大学

芝加哥大学(University of Chicago),简称芝大(UChicago),位于美国伊利诺伊州芝加哥,是世界著名私立研究型大学,常年位列各大学排行榜世界前十。 芝加哥大学1890年由石油大王约翰·洛克菲勒创办,是美国大学协会的创始会员之一。芝加哥大学包括本科学院以及由4个系、6所职业学院和1所继续教育学院组成的各种研究生项目和跨学科委员会,并拥有约5000名本科生和10,000名研究生。 芝加哥大学的学者和研究人员在众多人文社科领域均开创了“芝加哥学派”,其中包括著名的“芝加哥经济学派”和“芝加哥社会学派” ;芝加哥大学还是法律经济学的诞生地,是经济学、社会学、法学、人类学等学科全球最重要的研究教学中心之一。 而从曼哈顿计划开始,大批科学家汇集于芝大,在“原子能之父”恩里科·费米的领导下建立了世界上第一台可控核反应堆(”芝加哥一号堆”)、成功开启了人类的原子能时代,并创立了美国第一所国家实验室阿贡国家实验室和之后著名的费米实验室,进而奠定了芝大在自然科学界的重要地位。 截止至2017年,芝加哥大学有97位教师和校友曾获得诺贝尔奖,位列世界第四。另有9位菲尔兹奖得主 、4位图灵奖得主、22位普利策奖得主在芝大工作或学习过,还有15位教授荣获过美国国家科学奖章,现任教授中有近70位美国国家科学院(44位)、美国国家工程院(9位)和美国国家医学院院士(14位)。美国第44任总统奥巴马曾长期在芝大法学院任教(1992-2004年)。 芝加哥大学是培养华人精英的两个摇篮和聚集地之一(另一个是柏克萊加州大學)。芝加哥大学培养了李政道、杨振宁和崔琦三个华人诺贝尔奖得主(其中,李政道和杨振宁实现华人诺奖零的突破),著名华裔政治家、中华民国前副总统、中國國民黨前主席连战,著名法学家梅汝璈,著名医学家吴阶平,著名物理学家叶企孙,著名气象学家郭晓岚,保釣運動健將林孝信教授,世界银行前高级副总裁林毅夫等等亦毕业于芝加哥大学或曾在芝大学习。诺贝尔化学奖得主李远哲、数学家陈省身等也曾长期在芝加哥大学任教。.

恩里科·费米和芝加哥大学 · 愛德華·泰勒和芝加哥大学 · 查看更多 »

诺贝尔物理学奖

| title.

恩里科·费米和诺贝尔物理学奖 · 愛德華·泰勒和诺贝尔物理学奖 · 查看更多 »

鈾(Uranium)是一種銀白色金屬化學元素,屬於元素週期表中的錒系,化學符號為U,原子序為92。每個鈾原子有92個質子和92個電子,其中6個為價電子。鈾具有微放射性,其同位素都不稳定,并以鈾-238(146個中子)和鈾-235(143個中子)最为常见。鈾在天然放射性核素中原子量第二高,仅次于钚。其密度比鉛高出大約70%,比金和鎢低。天然的泥土、岩石和水中含有百萬分之一至百萬分之十左右的鈾。採礦工業從瀝青鈾礦等礦物中提取出鈾元素。 自然界中的鈾以三种同位素的形式存在:鈾-238(99.2739至99.2752%)、鈾-235(0.7198至0.7202%)、和微量的鈾-234(0.0050至0.0059%)。鈾在衰變的時候釋放出α粒子。鈾-238的半衰期為44.7億年,鈾-235的則為7.04億年,因此它们被用于估算地球的年齡。 鈾獨特的核子特性有很大的實用價值。鈾-235是唯一自发裂變的同位素。鈾-238在快速中子撞擊下能夠裂變,屬於增殖性材料,即能在核反應爐中經核嬗變成為可裂變的鈈-239。鈾-233也是一種用於核科技的可裂變同位素,可從自然釷元素製成。鈾-238自發裂變的機率极低,快中子撞擊可诱导其裂變;鈾-235和233可被慢中子撞击而裂变,如果其质量超过临界质量,就都能夠維持核連鎖反應,在核反应过程中的微小质量损失会转化成巨大的能量。这一特性使它们可用于生产核裂变武器与核能发电。耗尽后的鈾-235发电原料被称为貧鈾(含238U),可用做钢材添加剂,製造贫铀弹和裝甲。.

恩里科·费米和鈾 · 愛德華·泰勒和鈾 · 查看更多 »

杨振宁

杨振宁(Chen-Ning Franklin Yang,),中國理论物理学家,在统计力学和粒子物理学等领域贡献卓著,在物理学界影响力很大。他曾在抗日戰爭時的西南聯合大學唸本科、碩士,后赴美唸博士。他與李政道於1956年共同提出宇稱不守恆理論,因而分享1957年諾貝爾物理學獎,以中华民国国籍成为最早的华人諾獎得主。 1954年,杨振宁同米尔斯创立了“杨-米尔斯规范场”论(Yang-Mills gauge theory),是研究凝聚原子核的力的精深理论。杨振宁和米尔斯把电磁作用是由定域规范不变性所决定的观念推广到不可对易的定域对称群,提出具有定域同位旋不变性的理论,发现必须引进三种矢量规范场,它们形成同位旋转动群SU(2)的伴随表示。这就揭示出规范不变性可能是电磁作用和其他作用的共同本质,从而开辟了用此规范原理来统一各种相互作用的新途径。 自从杨振宁和R.J.Baxter分别于1967年与1972年创建了量子杨一巴克斯特方程(简称QYBE)以来,量子可积模型方面的研究取得了很大进展,特别是V.G.Drinfeld所建立的Yangian和量子群理论对物理中的量子完全可积模型的对称性研究提供了强有力的数学工具。经过系统的发展,已经证明杨-巴克斯特方程在统计模型、量子多体问题、量子可积模型和扭结理论等领域中扮演着至关重要的角色。.

恩里科·费米和杨振宁 · 愛德華·泰勒和杨振宁 · 查看更多 »

核反应堆

核反应堆(nuclear reactor)是一种启动、控制并维持核裂变或核聚變链式反应的装置。相对于核武爆炸瞬间所发生的失控链式反应,在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。 核反应堆有许多用途,当前最重要的用途是产生热能,用以代替其他燃料加热水,产生蒸汽发电或驱动航空母舰等设施运转。一些反应堆被用来生产为医疗和工业用途的同位素,或用于生产武器级钚。一些反应堆运行仅用于研究。当前全部商业核反应堆都是基于核裂变的。今天,在世界各地的大约30个国家里有被用于发电的大约450个核反应堆。.

恩里科·费米和核反应堆 · 愛德華·泰勒和核反应堆 · 查看更多 »

核聚变

--,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。在此过程中,物质没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子(能量)。核聚变是给活跃的或“主序的”恆星提供能量的过程。 两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 舉個例子:两个質量小的原子,比方說兩個氚,在一定条件下(如超高温和高压),會发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放。 原子核中蕴藏巨大的能量。根据质能方程E.

恩里科·费米和核聚变 · 愛德華·泰勒和核聚变 · 查看更多 »

核裂变

核裂变(;),--,是指由較重的(原子序数較大的)原子,主要是指鈾或鈽,分裂成较輕的(原子序数较小的)原子的一種核反應或放射性衰變形式。核裂变是由莉澤·邁特納、奥托·哈恩及奥托·罗伯特·弗里施等科學家在1938年發現。原子彈以及核电站的能量来源都是核裂变。早期原子彈應用鈽-239為原料製成。而鈾-235裂變在核電廠最常見。 重核原子經中子撞擊後,分裂成為兩個較輕的原子,同時釋放出數個中子,並且以伽马射线的方式釋放光子。釋放出的中子再去撞擊其它的重核原子,從而形成鏈式反應而自發分裂。原子核分裂時除放出中子還會放出熱,核電廠用以發電的能量即來源於此。因此核裂变產物的結合能需大於反應物的的結合能。 核裂变會將化學元素變成另一種化學元素,因此核裂变也是核遷變的一種。所形成的二個原子質量會有些差異,以常見的可裂变物质同位素而言,形成二個原子的質量比約為3:2。大部份的核裂变會形成二個原子,偶爾會有形成三個原子的核裂变,稱為,大約每一千次會出現二至四次,其中形成的最小產物大小介於質子和氬原子核之間。 現代的核裂变多半是刻意產生,由中子撞擊引發的人造核反應,偶爾會有自發性的,因放射性衰變產生的核裂变,後者不需要中子的引發,特別會出現在一些質量數非常高的同位素,其產物的組成有相當的機率性甚至混沌性,和质子发射、α衰變、等單純由量子穿隧產生的裂变不同,後面這些裂变每次都會產生相同的產物。原子彈以及核电站的能量来源都是核裂变。核燃料是指一物質當中子撞擊引發核裂变時也會釋放中子,因此可以產生鏈式反應,使核裂变持續進行。在核电站中,其能量產生速率控制在一個較小的速率,而在原子彈中能量以非常快速不受控制的方式釋放。 由於每次核分裂釋放出的中子數量大於一個,因此若對鏈式反應不加以控制,同時發生的核分裂數目將在極短時間內以幾何級数形式增長。若聚集在一起的重核原子足夠多,將會瞬間釋放大量的能量。原子彈便應用了核分裂的這種特性。製成原子彈所使用的重核含量,需要在90%以上。 核能發電應用中所使用的核燃料,鈾-235的含量通常很低,大約在3%到5%,因此不會產生核爆。但核電廠仍需要對反應爐中的中子數量加以控制,以防止功率過高造成爐心熔毀的事故。通常會在反應爐的慢化劑中添加硼,並使用控制棒吸收燃料棒中的中子以控制核分裂速度。從鎘以後的所有元素都能分裂。 核分裂時,大部分的分裂中子均是一分裂就立即釋出,稱為瞬發中子,少部分則在之後(一至數十秒)才釋出,稱為延遲中子。.

恩里科·费米和核裂变 · 愛德華·泰勒和核裂变 · 查看更多 »

欧内斯特·劳伦斯

欧内斯特·奥兰多·劳伦斯(Ernest Orlando Lawrence,),又译恩奈斯特·勞倫斯,美国物理学家。1939年因为参与发明回旋加速器被授予诺贝尔物理学奖。.

恩里科·费米和欧内斯特·劳伦斯 · 愛德華·泰勒和欧内斯特·劳伦斯 · 查看更多 »

氚(法語,德語,英語,荷蘭語: Tritium;符号:T或3H),注音:ㄔㄨㄢ;拼音:chuān(1);客家話:con1。亦稱超重氫,是氫的同位素之一,元素符號為T或3H。它的原子核由一顆質子和兩顆中子所組成,並帶有放射性,會發生β衰變,放出電子變成氦-3,其半衰期為12.43年。 由於氚的β衰變只會放出高速移動的電子,不會穿透人體,因此只有大量吸入氚才會對人體有害。 在地球的自然界中,相比一般的氫氣,氚的含量極少。氚的產生是當宇宙射線所帶的高能量中子撞擊氘核,其氘核與中子結合為氚核。 氚与氘之用途類同,都是制造氢弹的原料。另外氚還可做為不需電源、有自發光能力,供暗處識別用的氚管。 氚的半衰期只有12.43年,每過12.43年就要減少一半,所以地球誕生之初存在的氚早已衰變得無影無蹤了。自然界中的氚,是宇宙射線的產物,只有幾千克,物稀為貴,所以大部分是人工合成。.

恩里科·费米和氚 · 愛德華·泰勒和氚 · 查看更多 »

洛斯阿拉莫斯国家实验室

洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratory,LANL;前稱Y計劃、洛斯阿拉莫斯實驗室和洛斯阿拉莫斯科學實驗室)是美國承擔核子武器設計工作的兩個實驗室之一。另一個是勞倫斯利弗莫爾國家實驗室(始於1952年)。該國家實驗室位於新墨西哥州洛斯阿拉莫斯,隸屬美國能源部,管理和運行則歸洛斯阿拉莫斯國家安全會(LANS)負責。洛斯阿拉莫斯國家實驗室是世界上最大的科學和技術研究機構之一,它在國家安全、太空探索、 可再生能源、醫藥、納米技術和超級計算機等多個學科領域開展研究。 洛斯阿拉莫斯國家實驗室是新墨西哥州北部最大的研究機構和最大的雇主,擁有大約9,000名的直接僱員和774人左右的合同雇員。此外還有大約120名的美國能源部員工駐紮在實驗室,負責監督那裡的工作和運行情況。實驗室約三分之一的技術人員是物理學家,四分之一是工程師,六分之一為化學家和材料科學家,其餘的則在數學和計算科學、生物學、地球科學等其他學科的工作。外部的科學家和學生也會訪問洛斯阿拉莫斯國家實驗室參與科研項目。實驗室聯合大學和業界進行能源方面的基礎和應用研究。洛斯阿拉莫斯國家實驗室2016年的預算約為22億美元。.

恩里科·费米和洛斯阿拉莫斯国家实验室 · 愛德華·泰勒和洛斯阿拉莫斯国家实验室 · 查看更多 »

斯塔尼斯拉夫·乌拉姆

斯塔尼斯拉夫·马尔钦·烏拉姆(Stanisław Marcin Ulam,,波蘭犹太人數學家。他曾參與曼克頓計劃(核武器上有了Teller-Ulam design,Teller指愛德華·泰勒)。他亦有參與研究核能推動的穿梭機。在純數學上,遍歷理論、數論、集合論和代數拓撲都有他的足跡。 他生於匈牙利。其導師是斯特凡·巴拿赫。1938年他到了美國,先後在哈佛大學和威斯康辛大學麥迪遜分校工作。约翰·冯·诺伊曼邀請了他来參與在新墨西哥進行的「神秘計劃」。他提出使用蒙特卡羅方法計算核變的連鎖反應。他和C.J. Everett合作,證明泰勒最初的氫彈模型有問題,並建議了一個更佳的方案。.

恩里科·费米和斯塔尼斯拉夫·乌拉姆 · 愛德華·泰勒和斯塔尼斯拉夫·乌拉姆 · 查看更多 »

曼哈顿计划

曼哈顿计划(Manhattan Project)是第二次世界大戰期間研發與製造原子彈的一項大型軍事工程,由美國以及給予相關支援的英國與加拿大執行,該計划於1942年到1946年間直屬於美國陸軍工程兵團的莱斯利·理查德·格罗夫斯將軍領導,工程原名為「代用材料項目發展」(Development of Substitute Materials),後改為「曼哈頓工程區」(Manhattan District)。期間,美方也吸收了較早展開的英國核武器研發計畫——「合金管工程」之成果。曼哈顿计划早在1939年即秘密地展開,雇佣了超过13萬人员,花费了将近20億美金(相當於2014年260億美金),超过90%的費用用于建造工厂和制造核裂变的原材料,用于制造和发展武器的部份僅佔不到10%,此一工程在橫跨美國、英國和加拿大三國的30多個城市中均有進行。 戰爭期間,美軍研發出兩種類型的原子彈,一為設計上較簡單、使用鈾235製成的「」,由於鈾235在天然鈾中僅佔0.7%,其他絕大部分都是質量相同、難以分離的同位素鈾238,故美方以三種分離方式來提高其鈾-235的濃度——電磁(「」)、氣體(「氣體擴散法」)與熱(「索瑞特效應」),大部分工作都在田纳西州橡树岭一地進行。 1941年12月7日,日本偷袭美国珍珠港,美国对日宣战,自此开始,美国正式卷入二战。此时,纳粹德国已经开始了德國核武器開發計畫「铀计划」(Uranprojekt),目的是制造出核武器,运用在二战之中。一些美国科学家提出,要在纳粹德国之前研发出原子弹。 1942年12月2日,在费米的指导下,世界上第一个实验性原子反应堆在芝加哥建成,成功实现了可控的链式反应。1943年春,奥本海默领导科研人员开始制造原子弹的工作;翌年,美国橡树岭工厂生产出第一批浓缩铀原材料;1945年7月12日,第一颗实验性原子弹开始最后的装配。7月16日,美国的第一颗原子弹在新墨西哥州的沙漠中试爆成功,爆炸当量大约21,000吨TNT炸弹。8月6日,美国向广岛投放名为小男孩的原子弹;3日后(8月9日),向长崎投擲名为胖子的原子弹。8月15日,日本宣告无条件投降,第二次世界大战结束。.

恩里科·费米和曼哈顿计划 · 愛德華·泰勒和曼哈顿计划 · 查看更多 »

上面的列表回答下列问题

恩里科·费米和愛德華·泰勒之间的比较

恩里科·费米有219个关系,而愛德華·泰勒有109个。由于它们的共同之处23,杰卡德指数为7.01% = 23 / (219 + 109)。

参考

本文介绍恩里科·费米和愛德華·泰勒之间的关系。要访问该信息提取每篇文章,请访问: