我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

微积分学和泰勒公式

快捷方式: 差异相似杰卡德相似系数参考

微积分学和泰勒公式之间的区别

微积分学 vs. 泰勒公式

微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。. 在数学中,泰勒公式(Taylor's Formula)是一个用函数在某点的信息描述其附近取值的公式。這個公式來自於微積分的泰勒定理(Taylor's theorem),泰勒定理描述了一個可微函數,如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值,這個多項式稱為泰勒多項式(Taylor polynomial)。泰勒公式还给出了餘項即这个多项式和实际的函数值之间的偏差。泰勒公式得名于英国数学家布鲁克·泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。拉格朗日在1797年之前,最先提出了帶有餘項的現在形式的泰勒定理。.

之间微积分学和泰勒公式相似

微积分学和泰勒公式有(在联盟百科)13共同点: 导数微分微积分基本定理微积分学函数公式积分约瑟夫·拉格朗日無窮小量詹姆斯·格雷果里极限欧几里得空间数学

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

导数和微积分学 · 导数和泰勒公式 · 查看更多 »

微分

在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数\textstyle f的自变量\textstyle x有一个微小的改变\textstyle h时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量\textstyle h,可以表示成\textstyle h和一个与\textstyle h无关,只与函数\textstyle f及\textstyle x有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在\textstyle h上的值。另一部分是比\textstyle h更高阶的无穷小,也就是说除以\textstyle h后仍然会趋于零。当改变量\textstyle h很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在\textstyle x处的微分,记作\displaystyle f'(x)h或\displaystyle \textrmf_x(h)。如果一个函数在某处具有以上的性质,就称此函数在该点可微。 不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。 在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量\textstyle h映射到变化量的线性部分的线性映射\displaystyle \textrmf_x。这个映射也被称为切映射。.

微分和微积分学 · 微分和泰勒公式 · 查看更多 »

微积分基本定理

微积分基本定理描述了微积分的两个主要运算──微分和积分之间的关系。 定理的第一部分,称为微积分第一基本定理,表明不定积分是微分的逆运算。這一部分定理的重要之處在於它保證了某連續函數的原函數的存在性。 定理的第二部分,称为微积分第二基本定理或“牛顿-莱布尼茨公式”,表明定积分可以用无穷多个原函数的任意一个来计算。这一部分有很多实际应用,这是因为它大大简化了定积分的计算。 该定理的一个特殊形式,首先由詹姆斯·格里高利(1638-1675)证明和出版。定理的一般形式,则由艾萨克·巴罗完成证明。 微积分基本定理表明,一个变量在一段时间之内的无穷小变化之和,等于该变量的净变化。 我们从一个例子开始。假设有一个物体在直线上运动,其位置为x(t),其中t为时间,x(t)意味着x是t的函数。这个函数的导数等于位置的无穷小变化dx除以时间的无穷小变化dt(当然,该导数本身也与时间有关)。我们把速度定义为位置的变化除以时间的变化。用莱布尼兹记法: 整理,得 根据以上的推理,x的变化──\Delta x,是dx的无穷小变化之和。它也等于导数和时间的无穷小乘积之和。这个无穷的和,就是积分;所以,一个函数求导之后再积分,得到的就是原来的函数。我们可以合理地推断,这个运算反过来也成立,积分之后再求导,得到的也是原来的函数。.

微积分基本定理和微积分学 · 微积分基本定理和泰勒公式 · 查看更多 »

微积分学

微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.

微积分学和微积分学 · 微积分学和泰勒公式 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

函数和微积分学 · 函数和泰勒公式 · 查看更多 »

公式

在科學中,公式是一種把資訊準確地以符号表達的方法,就像是數學公式或化學式那樣。 在數學中,廣義上的公式是指在特定的形式文法下,把數學符號組合而成之結果。 在現代化學中,一個化學式中會有元素符號、數字,可能還有別的符號如圓括號、方括號和正負符號等,用以表示在化合物中各種原子所佔之比例,以及一些性質。例如H2O 即為水的化學式,表明每個水分子包含兩個氫原子和一個氧原子。類似地,O 是指包含三個氧原子並帶有一個負電荷的臭氧分子。.

公式和微积分学 · 公式和泰勒公式 · 查看更多 »

积分

积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.

微积分学和积分 · 泰勒公式和积分 · 查看更多 »

约瑟夫·拉格朗日

约瑟夫·拉格朗日伯爵(Joseph Lagrange,),法国籍意大利裔数学家和天文学家。拉格朗日曾为普鲁士的腓特烈大帝在柏林工作了20年,被腓特烈大帝称做「欧洲最伟大的数学家」,后受法国国王路易十六的邀请定居巴黎直至去世。拉格朗日一生才华横溢,在数学、物理和天文等领域做出了很多重大的贡献。他的成就包括著名的拉格朗日中值定理,创立了拉格朗日力学等等。 拉格朗日是18世纪一位十分重要的科学家,在数学、力学和天文学三个学科中都有历史性的重大贡献,但他主要是数学家。他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用,使数学的独立性更为清楚,而不仅是其他学科的工具。同时在使天文学力学化、力学分析化上也起了历史性作用,促使力学和天文学(天体力学)更深入发展。在他的时代,分析学等分支刚刚起步,欠缺严密性和标准形式,但这不足以妨碍他取得大量的成果。.

微积分学和约瑟夫·拉格朗日 · 泰勒公式和约瑟夫·拉格朗日 · 查看更多 »

無窮小量

無窮小量是數學分析中的一個概念,用以嚴格地定義諸如「最終會消失的量」、「絕對值比任何正數都要小的量」等非正式描述。在經典的微積分或數學分析中,無窮小量通常它以函數、序列等形式出現,例如,一個序列a.

微积分学和無窮小量 · 泰勒公式和無窮小量 · 查看更多 »

詹姆斯·格雷果里

詹姆斯·格雷果里(James Gregory,),苏格兰数学家、天文学家。.

微积分学和詹姆斯·格雷果里 · 泰勒公式和詹姆斯·格雷果里 · 查看更多 »

极限

极限可以指:.

微积分学和极限 · 极限和泰勒公式 · 查看更多 »

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

微积分学和欧几里得空间 · 欧几里得空间和泰勒公式 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

微积分学和数学 · 数学和泰勒公式 · 查看更多 »

上面的列表回答下列问题

微积分学和泰勒公式之间的比较

微积分学有151个关系,而泰勒公式有34个。由于它们的共同之处13,杰卡德指数为7.03% = 13 / (151 + 34)。

参考

本文介绍微积分学和泰勒公式之间的关系。要访问该信息提取每篇文章,请访问: