之间干涉 (物理学)和阿尔伯特·爱因斯坦相似
干涉 (物理学)和阿尔伯特·爱因斯坦有(在联盟百科)18共同点: 动量,太阳,以太,哥本哈根詮釋,光子,光电效应,玻色子,物理学,马克斯·普朗克,诺贝尔物理学奖,阿尔伯特·爱因斯坦,阿瑟·康普顿,重力波 (相對論),量子力学,波,波粒二象性,激光,散射。
动量
在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.
太阳
太陽或日是位於太陽系中心的恆星,它幾乎是熱電漿與磁場交織著的一個理想球體。其直徑大約是1,392,000(1.392)公里,相當於地球直徑的109倍;質量大約是2千克(地球的333,000倍),約佔太陽系總質量的99.86% ,同時也是27,173,913.04347826(約2697.3萬)倍的月球質量。 从化學組成来看,太陽質量的大約四分之三是氫,剩下的幾乎都是氦,包括氧、碳、氖、鐵和其他的重元素質量少於2% 。 太陽的恆星光譜分類為G型主序星(G2V)。雖然它以肉眼來看是白色的,但因為在可见光的頻譜中以黃綠色的部分最為強烈,從地球表面觀看時,大氣層的散射使天空成為藍色,所以它呈現黃色,因而被非正式地稱為“黃矮星” 。 光譜分類標示中的G2表示其表面溫度大約是5778K(5505°C),V则表示太陽像其他大多數的恆星一樣,是一顆主序星,它的能量來自於氫融合成氦的核融合反應。太陽的核心每秒鐘聚变6.2億噸的氫。太陽一度被天文學家認為是一顆微小平凡的恆星,但因為銀河系內大部分的恆星都是紅矮星,現在認為太陽比85%的恆星都要明亮。太陽的絕對星等是 +4.83,但是由于其非常靠近地球,因此从地球上看来,它是天空中最亮的天體,視星等達到−26.74。太陽高溫的日冕持續的向太空中拓展,創造的太陽風延伸到100天文單位遠的日球層頂。這個太陽風形成的“氣泡”稱為太陽圈,是太陽系中最大的連續結構。 太陽目前正在穿越銀河系內部邊緣獵戶臂的本地泡區中的本星際雲。在距離地球17光年的距離內有50顆最鄰近的恆星系(最接近的一顆是紅矮星,被稱為比鄰星,距太阳大約4.2光年),太陽的質量在這些恆星中排在第四。 太陽在距離銀河中心24,000至26,000光年的距離上繞著銀河公轉,從銀河北極鳥瞰,太陽沿順時針軌道運行,大約2.25億至2.5億年遶行一周。由於銀河系在宇宙微波背景輻射(CMB)中以550公里/秒的速度朝向長蛇座的方向運動,这两个速度合成之后,太陽相對於CMB的速度是370公里/秒,朝向巨爵座或獅子座的方向運動。 地球圍繞太陽公轉的軌道是橢圓形的,每年1月離太陽最近(稱為近日點),7月最遠(稱為遠日點),平均距離是1.496億公里(天文学上稱這個距離為1天文單位) 。以平均距離算,光從太陽到地球大約需要经过8分19秒。太陽光中的能量通过光合作用等方式支持着地球上所有生物的生长 ,也支配了地球的氣候和天氣。人类從史前時代就一直認為太陽對地球有巨大影響,有許多文化將太陽當成神来崇拜。人类對太陽的正確科學認識進展得很慢,直到19世紀初期,傑出的科學家才對太陽的物質組成和能量來源有了一點認識。直至今日,人类对太阳的理解一直在不断进展中,还有大量有关太陽活动机制方面的未解之謎等待着人们来破解。 現今,太陽自恆星育嬰室誕生以來已經45億歲了,而現有的燃料預計還可以燃燒50億年之久。.
以太
以太(Luminiferous aether、aether 或 ether)或譯為光乙太,是古希腊哲学家亞里斯多德所设想的一种物质,為五元素之一。19世紀的物理學家,認為它是一種曾被假想的電磁波的傳播媒質。但後來的实验和理论表明,如果不假定“以太”的存在,很多物理现象可以有更为简单的解释。也就是说,没有任何观测证据表明“以太”存在,因此“以太”理论被科学界抛弃。.
哥本哈根詮釋
哥本哈根詮釋(Copenhagen interpretation)是量子力學的一種詮釋。根據哥本哈根詮釋,在量子力學裏,量子系統的量子態,可以用波函數來描述,這是量子力學的一個關鍵特色,波函數是個數學函數,專門用來計算粒子在某位置或處於某種運動狀態的機率,測量的動作造成了波函數塌縮,原本的量子態機率地塌縮成一個測量所允許的量子態。 二十世紀早期,從一些關於小尺寸微觀物理的實驗裏,物理學家發現了很多新穎的量子現象。對於這些實驗結果,古典物理完全無法解釋。替而代之,物理學家提出了一些嶄新的理論。而這些理論能夠非常精確地解釋新發現的量子現象。但是,內嵌於這些經驗理論的,是一種關於小尺度真實世界的新模型。它們所給予的預測,常使物理學家覺得相當地反直覺。甚至它們的發現者都感受到極其驚訝。哥本哈根詮釋嘗試著,在實驗證據的範圍內,給予實驗結果和相關理論表述一個合理的解釋。換句話說,它試著回答一個問題:這些奇妙的實驗結果到底有什麼意義? 哥本哈根詮釋主要是由尼爾斯·波耳和維爾納·海森堡于1927年在哥本哈根合作研究时共同提出的。此詮釋延伸了由德国数学家、物理学家馬克斯·玻恩所提出的波函数的機率表述,之后发展为著名的不确定性原理。他們所提的詮釋嘗試要對一些量子力學所帶來的複雜問題提出回答,比如波粒二象性以及測量問題。此后,量子理论中的概率特性便不再是猜想,而是作为一条定律而存在了。量子论以及这条詮釋在整个自然科学以及哲学的发展和研究中都起着非常显著的作用。 哥本哈根詮釋給予了量子系統的量子行為一個精簡又易懂的解釋。1997年,在一場量子力學研討會上,舉行了一個關於詮釋論題的意向調查,根據這調查的結果,超過半數的物理學家對哥本哈根詮釋感到滿意;第二多的是多世界詮釋。雖然當前的傾向顯示出其它的詮釋也具有相當的競爭力,在20世紀期間,大多數的物理學家都願意接受哥本哈根詮釋。.
哥本哈根詮釋和干涉 (物理学) · 哥本哈根詮釋和阿尔伯特·爱因斯坦 ·
光子
| mean_lifetime.
光电效应
光电效应(Photoelectric Effect)是指光束照射物体时會使其發射出電子的物理效應。發射出來的電子稱為「光電子」。 1887年,德國物理學者海因里希·赫茲發現,紫外線照射到金屬電極上,可以幫助產生電火花。(On an effect of ultra-violet light upon the electric discharge)1905年,阿爾伯特·愛因斯坦發表論文《关于光产生和转变的一个启发性观点》,給出了光電效應實驗數據的理论解釋。愛因斯坦主張,光的能量并非均匀分布,而是負載於離散的光量子(光子),而這光子的能量和其所組成的光的頻率有關。這个突破性的理論不但能够解释光电效应,也推动了量子力學的诞生。由於「他對理論物理學的成就,特別是光電效應定律的發現」,愛因斯坦獲頒1921年諾貝爾物理學獎。 在研究光電效應的过程中,物理學者对光子的量子性質有了更加深入的了解,这對波粒二象性概念的提出有重大影響。除了光電效應以外,在其它現象裏,光子束也會影響電子的運動,包括光電導效應、光伏效應、光電化學效應(photoelectrochemical effect)。 根據波粒二象性,光電效應也可以用波動概念來分析,完全不需用到光子概念。威利斯·蘭姆與馬蘭·斯考立(Marlan Scully)於1969年使用半經典方法證明光電效應,這方法將電子的行為量子化,又將光視為純粹經典電磁波,完全不考慮光是由光子組成的概念。.
光电效应和干涉 (物理学) · 光电效应和阿尔伯特·爱因斯坦 ·
玻色子
在量子力學裡,粒子可以分為玻色子(boson)與費米子。Carroll, Sean (2007) Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 p. 43, The Teaching Company, ISBN 978-1-59803-350-2 "...boson: A force-carrying particle, as opposed to a matter particle (fermion).
干涉 (物理学)和玻色子 · 玻色子和阿尔伯特·爱因斯坦 ·
物理学
物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.
干涉 (物理学)和物理学 · 物理学和阿尔伯特·爱因斯坦 ·
马克斯·普朗克
克斯·卡尔·恩斯特·路德维希·普朗克(Max Karl Ernst Ludwig Planck,),德国物理学家,量子力学的创始人,20世纪最重要的物理学家之一,因发现能量量子而对物理学的发展做出了重要贡献,並在1918年獲得诺贝尔物理学奖。 作为一个理论物理学家,普朗克最大的贡献是首先提出了(舊)量子论。这个理论彻底改变人类对原子與次原子的认识,正如爱因斯坦的相对论改变人类对时间和空间的认识,这两个理论一起构成了20世纪物理学的基础。 波耳、愛因斯坦與普朗克被稱為舊量子論的奠基者。.
干涉 (物理学)和马克斯·普朗克 · 阿尔伯特·爱因斯坦和马克斯·普朗克 ·
诺贝尔物理学奖
| title.
干涉 (物理学)和诺贝尔物理学奖 · 诺贝尔物理学奖和阿尔伯特·爱因斯坦 ·
阿尔伯特·爱因斯坦
阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.
干涉 (物理学)和阿尔伯特·爱因斯坦 · 阿尔伯特·爱因斯坦和阿尔伯特·爱因斯坦 ·
阿瑟·康普顿
阿瑟·霍利·康普顿(Arthur Holly Compton,),美国物理学家,因发现展示电磁辐射粒子性的康普顿效应而于1927年获得诺贝尔物理学奖。那时的人们尽管已经清楚理解光的波动性,但仍不能完全接受光同时具有波动性与粒子性。因而这一发现轰动一时。他在曼哈顿计划中领导冶金实验室的事迹,以及在1945至1953年间担任圣路易斯华盛顿大学校长的经历也为人熟知。 1919年,康普顿成为首批受美国国家科学研究委员会资助出外留学的学生,前往英国剑桥大学的卡文迪许实验室深造。在那里,他研究了伽马射线的散射与吸收。他在日后发现的康普顿效应正是基于这些研究。此外,他还利用X射线研究了铁磁性与宇宙射线,并发现:铁磁性是电子自旋排列的宏观表现;宇宙射线主要由带正电的粒子组成。 第二次世界大战期间,康普顿是曼哈顿计划的关键人物。他的报告对于计划的实施非常重要。1942年,他成为冶金实验室的领导人,负责建造将铀转化为钚的核反应堆、寻找将钚从铀中分离出来的方法以及设计原子弹等工作。康普顿监理了恩里科·费米建造世界首个核反应堆芝加哥1号堆的过程,该反应堆在1942年12月2日开始试运行。冶金实验室还负责了位于橡树岭国家实验室的的设计与实现。钚则在1945年自汉福德区的中开始制造出来。 战后,康普顿成为圣路易斯华盛顿大学的校长。在其任期内,学校正式废止本科生中的种族隔离,任命了首任女性正教授,又录取了大量回国老兵。.
干涉 (物理学)和阿瑟·康普顿 · 阿尔伯特·爱因斯坦和阿瑟·康普顿 ·
重力波 (相對論)
在廣義相對論裡,重力波是時空的漣漪。當投擲石頭到池塘裡時,會在池塘表面產生漣漪,從石頭入水的位置向外傳播。當帶質量物體呈加速度運動時,會在時空產生漣漪,從帶質量物體位置向外傳播,這時空的漣漪就是重力波。由於廣義相對論限制了引力相互作用的傳播速度為光速,因此會產生重力波的現象。相反地說,牛頓重力理論中的交互作用是以無限的速度傳播,所以在這一理論下並不存在重力波。 由於重力波與物質彼此之間的相互作用非常微弱,重力波很不容易被傳播途中的物質所改變,因此重力波是優良的信息載子,能夠從宇宙遙遠的那一端真實地傳遞寶貴信息過來給人們觀測。重力波天文學是觀測天文學的一門新興分支。重力波天文學利用重力波來對於劇烈天文事件所製成的重力波波源進行數據收集,例如,像白矮星、中子星與黑洞一類的星體所組成的聯星,另外,超新星與大爆炸也是劇烈天文事件所製成的重力波波源。原則而言,天文學者可以利用重力波觀測到超新星的核心,或者大爆炸的最初幾分之一秒,利用電磁波無法觀測到這些重要天文事件。 阿爾伯特·愛因斯坦根據廣義相對論於1916年預言了重力波的存在。1974年,拉塞爾·赫爾斯和約瑟夫·泰勒發現赫爾斯-泰勒脈衝雙星。這雙星系統在互相公轉時,由於不斷發射重力波而失去能量,因此逐漸相互靠近,這現象為重力波的存在提供了首個間接證據。科學家也利用重力波探測器來觀測重力波現象,如簡稱LIGO的激光干涉重力波天文台。2016年2月11日,LIGO科學團隊與處女座干涉儀團隊共同宣布,人类於2015年9月14日首次直接探测到重力波,其源自於双黑洞合併。之後,又陸續多次探測到重力波事件,特別是於2017年8月17日首次探測到源自於雙中子星合併的重力波事件GW170817。除了LIGO以外,另外還有幾所重力波天文台正在建造。2017年,萊納·魏斯、巴里·巴利許與基普·索恩因成功探測到重力波,而獲得諾貝爾物理學獎。.
干涉 (物理学)和重力波 (相對論) · 重力波 (相對論)和阿尔伯特·爱因斯坦 ·
量子力学
量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.
干涉 (物理学)和量子力学 · 量子力学和阿尔伯特·爱因斯坦 ·
波
波或波动是扰动或物理信息在空间上传播的一种物理現象,扰动的形式任意,傳遞路徑上的其他介質也作同一形式振動。波的传播速度总是有限的。除了电磁波、引力波(又稱「重力波」)能够在真空中传播外,大部分波如机械波只能在介质中传播。波速與介質的彈性與慣性有關,但與波源的性質無關。.
波粒二象性
波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。.
干涉 (物理学)和波粒二象性 · 波粒二象性和阿尔伯特·爱因斯坦 ·
激光
雷射(LASER),中國大陸譯成激--光,在港澳台又音譯为镭--射或雷--射,是“通过受激辐射产生的光放大”(Light Amplification by Stimulated Emission of Radiation)的缩写,指通过刺激原子导致电子跃迁释放辐射能量而产生的具有同調性的增强光子束,其特点包括发散度极小,亮度(功率)可以达到很高等。產生激光需要“激發來源”,“增益介質”,“共振结构”這三個要素。.
散射
傳播中的輻射,像光波、音波、電磁波、或粒子,在通過局部性的位勢時,由於受到位勢的作用,必須改變其直線軌跡,這物理過程,稱為散射。這局部性位勢稱為散射體,或散射中心。局部性位勢各式各樣的種類,無法盡列;例如,粒子、氣泡、液珠、液體密度漲落、晶體缺陷、粗糙表面等等。在傳播的波動或移動的粒子的路徑中,這些特別的局部性位勢所造成的效應,都可以放在散射理論(scattering theory)的框架裏來描述。.
上面的列表回答下列问题
- 什么干涉 (物理学)和阿尔伯特·爱因斯坦的共同点。
- 什么是干涉 (物理学)和阿尔伯特·爱因斯坦之间的相似性
干涉 (物理学)和阿尔伯特·爱因斯坦之间的比较
干涉 (物理学)有105个关系,而阿尔伯特·爱因斯坦有256个。由于它们的共同之处18,杰卡德指数为4.99% = 18 / (105 + 256)。
参考
本文介绍干涉 (物理学)和阿尔伯特·爱因斯坦之间的关系。要访问该信息提取每篇文章,请访问: