我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

岩澤理論和肯尼斯·阿蘭·黎貝

快捷方式: 差异相似杰卡德相似系数参考

岩澤理論和肯尼斯·阿蘭·黎貝之间的区别

岩澤理論 vs. 肯尼斯·阿蘭·黎貝

數論中,岩澤理論是理想類群的伽羅瓦模理論,由日本數學家岩澤健吉於1950年代提出,是割圓域理論的一部分。1970年代初,貝利·馬祖爾(Barry Mazur)考慮了岩澤理論在阿貝爾簇上的推廣。到1990年代初,拉爾夫·格林伯格將岩澤理論應用到動形理論(法文:motifs、英文:motives)。. 肯尼斯·阿蘭·黎貝(Kenneth Alan Ribet,簡稱肯·黎貝,),美國數學家,目前在柏克萊加州大學任教,研究領域涉及代數數論與代數幾何。 黎貝在安德魯·懷爾斯證明費馬最後定理的過程中曾經做出大量貢獻,尤其是他證明了讓-皮埃爾·塞爾提出的ε猜想(現稱黎貝定理),由這一定理可以引出費馬最後定理是谷山-志村定理的一個結論。最為重要的是,黎貝的結論說明了證明費馬最終定理並不需要整個谷山-志村定理,而僅需其在半穩定橢圓曲線情況下的特例。.

之间岩澤理論和肯尼斯·阿蘭·黎貝相似

岩澤理論和肯尼斯·阿蘭·黎貝有(在联盟百科)3共同点: 安德魯·懷爾斯代數數論费马大定理

安德魯·懷爾斯

安德魯·約翰·懷爾斯爵士,KBE,FRS(Sir Andrew John Wiles,,),英國數學家,居於美國。因證明費馬最後定理,獲得2016年阿貝爾獎。.

安德魯·懷爾斯和岩澤理論 · 安德魯·懷爾斯和肯尼斯·阿蘭·黎貝 · 查看更多 »

代數數論

在數學中,代數數論是數論的一支,其中我們將「數」的概念延伸,以解決具體的數論問題。我們在代數數論中考慮代數數,這類數是有理係數多項式的根。與此相關的概念是數域,這是有理數域的有限擴張。在此框架下能推廣整數為代數整數,並研究一個數域裡的代數整數。 代數整數在加法、減法與乘法下構成一個環,但整數的許多性質並不能推廣到一般數域裡的代數整數上,其中一個例子是素因數分解的唯一性(又稱算術基本定理),這是十九世紀數學家試圖證明費馬大定理時遇到的主要阻礙,然而代數數論的應用不僅止於此。數學中一些較深入的理論有助於讓我們了解代數數與代數整數的性質——包括伽羅瓦理論、伽羅瓦上同調、類域論、表示理論與L-函數的相關理論等等。 數論中的許多問題可藉由「模 p」(其中 p 為素數)來研究。這套技術導向p進數的建構,而p進數是局部域的例子;局部域的研究運用了一些研究數域時的相同方法,但是通常更容易處理。一般數域上的陳述常與各個局部域上的相應陳述有關,例如哈瑟原理:「一個有理係數二次方程在有理數域上有解,若且唯若它在實數上及在每個素數 p 之 p進數域上有解」。這類結果往往被稱作局部-整體原理,其中「局部」意指局部域,而「整體」意指數域。.

代數數論和岩澤理論 · 代數數論和肯尼斯·阿蘭·黎貝 · 查看更多 »

费马大定理

费马大定理,也称費馬最後定理(Le dernier théorème de Fermat);(Fermat's Last Theorem),其概要為: 以上陳述由17世纪法国数学家费马提出,一直被稱為「费马猜想」,直到英國數學家安德魯·懷爾斯(Andrew John Wiles)及其學生理查·泰勒(Richard Taylor)於1995年將他們的證明出版後,才稱為「費馬大定理」。這個猜想最初出現費馬的《頁邊筆記》中。儘管費馬表明他已找到一個精妙的證明而頁邊没有足夠的空位寫下,但仍然經過數學家們三個多世紀的努力,猜想才變成了定理。在衝擊這個数论世紀难题的過程中,無論是不完全的還是最後完整的證明,都給數學界帶來很大的影響;很多的數學結果、甚至數學分支在這個過程中誕生了,包括代數幾何中的橢圓曲線和模形式,以及伽羅瓦理論和赫克代數等。這也令人懷疑當初費馬是否真的找到了正確證明。而安德魯·懷爾斯由於成功證明此定理,獲得了包括邵逸夫獎在内的数十个奖项。.

岩澤理論和费马大定理 · 肯尼斯·阿蘭·黎貝和费马大定理 · 查看更多 »

上面的列表回答下列问题

岩澤理論和肯尼斯·阿蘭·黎貝之间的比较

岩澤理論有18个关系,而肯尼斯·阿蘭·黎貝有13个。由于它们的共同之处3,杰卡德指数为9.68% = 3 / (18 + 13)。

参考

本文介绍岩澤理論和肯尼斯·阿蘭·黎貝之间的关系。要访问该信息提取每篇文章,请访问: