徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

多重线性代数

指数 多重线性代数

在数学中,多重线性代数推广了线性代数的方法。和线性代数一样也是建立在向量的概念上,发展了向量空间的理论。在应用上,出现了许多类型的张量。该理论全面囊括了一系列空间以及它们之间的关系。.

44 关系: 双线性映射叉积同调向量空间多重线性映射外代数外微分外积对偶空间尼古拉·布尔巴基並矢張量度量张量应用数学廣義相對論代数拓扑张量 (内蕴定义)张量代数张量场张量积張量微分形式微分几何德拉姆上同调内积克罗内克函数克萊姆法則四元數环面积空间线性代数爱因斯坦求和约定狄拉克符号行列式超复数范畴论赫尔曼·外尔赫爾曼·格拉斯曼Tor函子李群泛性质流形旋量数学拓扑空间

双线性映射

在数论中,一个双线性映射是由两个向量空间上的元素,生成第三个向量空间上一个元素之函数,并且该函数对每个参数都是线性的。例如矩阵乘法就是一个例子。.

新!!: 多重线性代数和双线性映射 · 查看更多 »

叉积

在数学和向量代数领域,叉積(Cross product)又称向量积(Vector product),是对三维空间中的两个向量的二元运算,使用符号 \times。与点积不同,它的运算结果是向量。对于线性无关的两个向量 \mathbf 和 \mathbf,它们的叉积写作 \mathbf \times \mathbf,是 \mathbf 和 \mathbf 所在平面的法线向量,与 \mathbf 和 \mathbf 都垂直。叉积被广泛运用于数学、物理、工程学、计算机科学领域。 如果两个向量方向相同或相反(即它们非线性无关),亦或任意一个的长度为零,那么它们的叉积为零。推广开来,叉积的模长和以这两个向量为边的平行四边形的面积相等;如果两个向量成直角,它们叉积的模长即为两者长度的乘积。 叉积和点积一样依赖于欧几里德空间的度量,但与点积之不同的是,叉积还依赖于定向或右手定則。.

新!!: 多重线性代数和叉积 · 查看更多 »

同调

数学上(特别是代数拓扑和抽象代数),同调 (homology,在希腊语中homos.

新!!: 多重线性代数和同调 · 查看更多 »

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

新!!: 多重线性代数和向量空间 · 查看更多 »

多重线性映射

在线性代数中,多重线性映射是有多个向量变量而对每个变量都是线性的函数。 n个变量的多线性映射也叫做n重线性映射。 如果所有变量属于同一个空间,可以考虑对称、反对称和交替的n重线性映射。后两个是一致的,如果底层的环(或域)有不同于二的特征,否则前两个是一致的。 一般讨论可见多重线性代数。.

新!!: 多重线性代数和多重线性映射 · 查看更多 »

外代数

外代数(Exterior algebra)也稱為格拉斯曼代数(Grassmann algebra),以紀念赫爾曼·格拉斯曼。 数学上,给定向量空间V的外代數,是特定有单位的结合代数,其包含了V为其中一个子空间。它记为 Λ(V) 或 Λ•(V)而它的乘法,称为楔积或外积,记为∧。楔积是结合的和双线性的;其基本性質是它在V上交錯的,也就是: 这表示 注意这三个性质只对 V 中向量成立,不是对代数Λ(V)中所有向量成立。 外代数事实上是“最一般的”满足这些属性的代数。这意味着所有在外代数中成立的方程只从上述属性就可以得出。Λ(V)的这个一般性形式上可以用一个特定的泛性质表示,请参看下文。 形式为v1∧v2∧…∧vk的元素,其中v1,…,vk在V中,称为k-向量。所有k-向量生成的Λ(V)的子空间称为V的k-阶外幂,记为Λk(V)。外代数可以写作每个k阶幂的直和: 该外积有一个重要性质,就是k-向量和l-向量的积是一个k+l-向量。这样外代数成为一个分次代数,其中分级由k给出。这些k-向量有几何上的解释:2-向量u∧v代表以u和v为边的带方向的平行四边形,而3-向量u∧v∧w代表带方向的平行六面体,其边为u, v, 和w。 外幂的主要应用在于微分几何,其中他们用来定义微分形式。因而,微分形式有一个自然的楔积。所有这些概念由格拉斯曼提出。.

新!!: 多重线性代数和外代数 · 查看更多 »

外微分

数学上,微分拓扑的外微分算子,把一个函数的微分的概念推广到更高阶的微分形式的微分。它在流形上的积分理论中极为重要,并且是德拉姆和Alexander-Spanier上同调中所使用的微分算子。其现代形式是由嘉当发明的。.

新!!: 多重线性代数和外微分 · 查看更多 »

外积

外积(Outer product),在线性代数中一般指两个向量的张量積,其結果為一矩陣;與外积相對,兩向量的內積結果為純量。 外積也可視作是矩陣的克羅內克積的一種特例。注意到:一些作者將「張量的外積」作為張量積的同義詞。.

新!!: 多重线性代数和外积 · 查看更多 »

对偶空间

在數學裡,任何向量空間V都有其對應的對偶向量空間(或簡稱為對偶空間),由V的線性泛函組成。此對偶空間俱有一般向量空間的結構,像是向量加法及純量乘法。由此定義的對偶空間也可稱之為代數對偶空間。在拓撲向量空間的情況下,由連續的線性泛函組成的對偶空間則稱之為連續對偶空間。 对偶空間是 行向量(1×n)與列向量(n×1)的關係的抽象化。這個結構能夠在無限維度空間進行並為测度,分佈及希爾伯特空間提供重要的觀點。对偶空間的應用是泛函分析理論的特徵。傅立叶變換亦內蘊对偶空間的概念。.

新!!: 多重线性代数和对偶空间 · 查看更多 »

尼古拉·布尔巴基

尼古拉·布尔巴基(Nicolas Bourbaki,法語發音)是20世纪一群法国数学家的笔名。他們由1935年開始撰寫一系列述說對現代高等數學探研所得的書籍。以把整個數學建基於集合论為目的,在過程中,布尔巴基致力於做到最極端的嚴謹和泛化,建立了些新術語和概念。 布尔巴基是个虚构的人物,布尔巴基团体的正式称呼是“尼古拉·布尔巴基合作者协会”,在巴黎的高等师范学校设有办公室。.

新!!: 多重线性代数和尼古拉·布尔巴基 · 查看更多 »

並矢張量

在多重線性代數裡,並矢張量(dyadic tensor)是一個以特別標記法寫出的二階張量,是由成對的向量並置形成的。針對這特別標記法,有一套專門計算這種表達式,類似於矩陣代數規則的方法。並矢張量的每一對向量的並置稱為並矢(dyad)。兩個單位基底向量的並矢積稱為單位並矢(unit dyad)。純量與單位並矢的乘積就是並矢。 例如,設定兩個三維向量 \boldsymbol\, 和 \boldsymbol\, , 其中,\boldsymbol\, 、\boldsymbol\, 、\boldsymbol\,,形成了一個三維空間裏的標準正交基的單位基底向量。 那麼,\boldsymbol\, 與 \boldsymbol\, 並置成為 其中,\boldsymbol\, 、\boldsymbol\, 、\boldsymbol\, 等等,都是單位並矢,v_1 w_1\boldsymbol\, 、v_1 w_2 \boldsymbol\, 、v_1 w_3 \boldsymbol\, 等等,都是並矢。 並矢張量 \boldsymbol\, 也可以表達為 \begin \end\, 。.

新!!: 多重线性代数和並矢張量 · 查看更多 »

度量张量

在黎曼幾何裡面,度量張量(英語:Metric tensor)又叫黎曼度量,物理学译为度規張量,是指一用來衡量度量空间中距離,面積及角度的二階張量。 當选定一個局部坐標系統x^i,度量張量為二階張量一般表示為 \textstyle ds^2.

新!!: 多重线性代数和度量张量 · 查看更多 »

应用数学

應用數學(Applied Mathematics)是以應用為目的的明確的數學理論和方法的總稱,研究如何應用數學知識到其他範疇(尤其是科學)的數學分支,可以說是純數學的相反,應用純數學中的結論擴展到物理學等其他科學中,應用數學的發展是以科學為依據,作為科學研究的後盾。包括線性代數、矩陣理論、向量分析、複變分析、微分方程、拉普拉斯變換、傅里葉分析、數值分析、概率论、數理統計、運籌學、博弈論、控制理論、組合數學、資訊理論等許多數學分支,也包括從各種應用領域中提出的數學問題的研究。而大部分應用數學是以作為物理分析的工具。計算數學有時也可視為應用數學的一部分。應用數學大部分的教學範疇都是以物理的模型為基礎進行分析,當中或許搭配了各種數學工具,就為了更貼近物理的系統。 圖論應用在網絡分析,拓撲學在電路分析上的應用,群論在結晶學上的應用,微分幾何在規範場上的應用,自動控制理論在計算上的應用,黎曼幾何應用於相對論,數理邏輯應用於計算機,最小二乘法應用於飛機起降時自動控制,利用數字合成計算機輔助的X射線斷層成像技術(1979年數學家獲得諾貝爾醫學獎)數論應用在密碼學,博弈論、概率論、統計學應用在經濟學,線性規劃用於生產安排調度,都可見數學在不同範疇的應用。.

新!!: 多重线性代数和应用数学 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

新!!: 多重线性代数和廣義相對論 · 查看更多 »

代数拓扑

代数拓扑(Algebraic topology)是使用抽象代数的工具来研究拓扑空间的数学分支。.

新!!: 多重线性代数和代数拓扑 · 查看更多 »

张量 (内蕴定义)

在数学中,处理张量理论的现代无分量(component-free)方法首先将张量视为抽象对象,表示多重线性概念的某些特定类型。他们一些熟知的性质可由作为线性映射或更广泛地定义得出;而张量的操作导致了线性代数扩张为多重线性代数。 在微分几何中,一个内蕴的几何论断也许可以用一个流形上的张量场表示,这样完全不必使用参考坐标系。在广义相对论中同样如此,张量场描述了物理性质。无分量方法在抽象代数与同调代数中也很常用,在那里张量自然地出现了。.

新!!: 多重线性代数和张量 (内蕴定义) · 查看更多 »

张量代数

在数学中,一个向量空间V的张量代数(tensor algebra),记作T(V)或T·(V),是V上的(任意阶)张量的代数,其乘法为张量积。张量代数左伴随于从代数到向量空间的遗忘函子,在这种意义下它是V上的自由代数;在相应的泛性质的意义下,它是包含V的“最一般的代数”(见下)。 张量代数也具有余代数结构。 注:本文中所有代数都假设是有单位的且结合。.

新!!: 多重线性代数和张量代数 · 查看更多 »

张量场

在数学,物理和工程上,张量场(tensor field)是一个的非常一般化的几何变量的概念。它被用在微分几何和流形的理论中,在代数几何中,在广义相对论中,在材料的应力和应变的分析中,和在物理科学和工程的无数应用中。它是向量场的想法的一般化,而向量场可以视为“从点到点变化的向量”。 物理学中场的一种。假如一个空间中的每一点的属性都可以以一个张量来代表的话,那么这个场就是一个张量场。最常见的张量场有广义相对论的应力能张量场(Stress-energy tensor field)。 必须注意到很多不严格的称为“张量”的数学结构实际上是“张量场”,定义在流形上的场在流形的每点定义了一个张量。.

新!!: 多重线性代数和张量场 · 查看更多 »

张量积

在数学中,张量积,记为 \otimes,可以应用于不同的上下文中如向量、矩阵、张量、向量空间、代数、拓扑向量空间和模。在各种情况下这个符号的意义是同样的: 最一般的双线性运算。在某些上下文中也叫做外积。 例子: \mathbf \otimes \mathbf \rightarrow \beginb_1 \\ b_2 \\ b_3 \\ b_4\end \begina_1 & a_2 & a_3\end.

新!!: 多重线性代数和张量积 · 查看更多 »

張量

張量(tensor)是一个可用來表示在一些向量、純量和其他張量之間的線性關係的多线性函数,這些線性關係的基本例子有內積、外積、線性映射以及笛卡儿积。其坐标在 n  維空間內,有  n^r個分量的一種量,其中每個分量都是坐標的函數,而在坐標變換時,這些分量也依照某些規則作線性變換。r稱為該張量的秩或階(与矩阵的秩和阶均无关系)。 在同构的意义下,第零階張量(r.

新!!: 多重线性代数和張量 · 查看更多 »

微分形式

微分形式是多变量微积分,微分拓扑和张量分析领域的一个数学概念。现代意义上的微分形式,及其以楔积(wedge product)和外微分结构形成外代数的想法,都是由法国数学家埃里·嘉当引入的。.

新!!: 多重线性代数和微分形式 · 查看更多 »

微分几何

微分幾何研究微分流形的幾何性質,是現代數學中一主流;是廣義相對論的基礎,與拓撲學、代數幾何及理論物理關係密切。 古典微分几何起源于微积分,主要内容为曲线论和曲面论。歐拉、蒙日和高斯被公认为古典微分几何的奠基人。近代微分几何的创始人是黎曼,他在1854年创立了黎曼几何(实际上黎曼提出的是芬斯勒几何),这成为近代微分几何的主要内容,并在相对论有极为重要的作用。埃利·嘉当和陈省身等人曾在微分几何领域做出极为杰出的贡献。.

新!!: 多重线性代数和微分几何 · 查看更多 »

德拉姆上同调

数学上,德拉姆上同调(de Rham cohomology)是同时属于代数拓扑和微分拓扑的工具。它能够以一种特别适合计算和用具体的上同调类的方式表达关于光滑流形的基本拓扑信息。它是基于有特定属性的微分形式的存在性的上同调理论。它以不同的确定的意义对偶于奇异同调,以及亚历山大-斯潘尼尔上同调。.

新!!: 多重线性代数和德拉姆上同调 · 查看更多 »

内积

#重定向 点积.

新!!: 多重线性代数和内积 · 查看更多 »

克罗内克函数

#重定向 克罗内克δ函数.

新!!: 多重线性代数和克罗内克函数 · 查看更多 »

克萊姆法則

克萊姆法則(Cramer's rule),又稱為克拉瑪公式,是一個線性代數中的定理,用行列式來計算出線性等式組中的所有解。這個定理因加百列·克萊姆(1704年 - 1752年)的卓越使用而命名。在計算上,並非最有效率之法,所以在很多條等式的情況中沒有廣泛應用。不過,這定理在理論性方面十分有用。.

新!!: 多重线性代数和克萊姆法則 · 查看更多 »

四元數

四元數是由爱尔兰數學家威廉·盧雲·哈密頓在1843年创立出的數學概念。 從明確地角度而言,四元數是複數的不可交換延伸。如把四元數的集合考慮成多維實數空間的話,四元數就代表著一個四维空间,相對於複數為二维空间。 作为用于描述现实空间的坐标表示方式,人们在复数的基础上创造了四元数并以a+bi+cj+dk的形式说明空间点所在位置。 i、j、k作为一种特殊的虚数单位参与运算,并有以下运算规则:i0.

新!!: 多重线性代数和四元數 · 查看更多 »

环面

没有描述。

新!!: 多重线性代数和环面 · 查看更多 »

积空间

拓扑学和数学的相关领域中,积空间是指一族拓扑空间的笛卡儿积,并配备了一个称为积拓扑的自然的拓扑结构。.

新!!: 多重线性代数和积空间 · 查看更多 »

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

新!!: 多重线性代数和线性代数 · 查看更多 »

爱因斯坦求和约定

在數學裏,特別是將線性代數套用到物理時,愛因斯坦求和約定(Einstein summation convention)是一種標記的約定,又稱為愛因斯坦標記法(Einstein notation),在處理關於坐標的方程式時非常有用。這約定是由阿爾伯特·愛因斯坦於1916年提出的。後來,愛因斯坦與友人半開玩笑地說:「這是數學史上的一大發現,若不信的話,可以試著返回那不使用這方法的古板日子。」 按照愛因斯坦求和約定,當一個單獨項目內有標號變數出現兩次,一次是上標,一次是下標時,則必須總和所有這單獨項目的可能值。通常而言,標號的標值為1、2、3(代表維度為三的歐幾里得空間),或0、1、2、3(代表維度為四的時空或閔可夫斯基時空)。但是,標值可以有任意值域,甚至(在某些應用案例裏)無限集合。這樣,在三維空間裏, 的意思是 請特別注意,上標並不是指數,而是標記不同坐標。例如,在直角坐標系裏,x^1\,\!、x^2\,\!、x^3\,\!分別表示x\,\!坐標、y\,\!坐標、z\,\!坐標,而不是x\,\!、x\,\!的平方、x\,\!的立方。.

新!!: 多重线性代数和爱因斯坦求和约定 · 查看更多 »

狄拉克符号

拉克符号或狄拉克標記(Dirac notation)是量子力学中广泛应用于描述量子态的一套标准符号系统。在这套系统中,每一个量子态都被描述为希尔伯特空间中的態向量,定义为右矢(ket):|\psi\rangle;每一个右矢的共軛轉置定义为其左矢(bra):\langle\psi|。 此標記法為狄拉克於1939年将「bracket」(括号)这个词拆开后所造的。 在中國方面,一些旧有的教科书和文献中也将其译为“刁矢”和“刃矢”、或“彳矢”和“亍矢”,现已弃用。.

新!!: 多重线性代数和狄拉克符号 · 查看更多 »

行列式

行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.

新!!: 多重线性代数和行列式 · 查看更多 »

超复数

超複數是複數在抽象代數中的引申,以高維度呈現。例如:.

新!!: 多重线性代数和超复数 · 查看更多 »

范畴论

疇論是數學的一門學科,以抽象的方法來處理數學概念,將這些概念形式化成一組組的「物件」及「態射」。數學中許多重要的領域可以形式化成範疇,並且使用範疇論,令在這些領域中許多難理解、難捉摸的數學結論可以比沒有使用範疇還會更容易敘述及證明。 範疇最容易理解的一個例子為集合範疇,其物件為集合,態射為集合間的函數。但需注意,範疇的物件不一定要是集合,態射也不一定要是函數;一個數學概念若可以找到一種方法,以符合物件及態射的定義,則可形成一個有效的範疇,且所有在範疇論中導出的結論都可應用在這個數學概念之上。 範疇最簡單的例子之一為广群,其態射皆為可逆的。群胚的概念在拓撲學中很重要。範疇現在在大部分的數學分支中都有出現,在理論電腦科學的某些領域中用于對應資料型別,而在數學物理中被用來描述向量空間。 範疇論不只是對研究範疇論的人有意義,對其他數學家而言也有著其他的意思。一個可追溯至1940年代的述語「一般化的抽象廢話」,即被用來指範疇論那相對於其他傳統的數學分支更高階的抽象化。.

新!!: 多重线性代数和范畴论 · 查看更多 »

赫尔曼·外尔

赫尔曼·克劳斯·胡戈·外尔(Hermann Klaus Hugo Weyl,)是一位德国数学家,物理学家和哲学家。 尽管他的大部分工作时间是在瑞士苏黎世和美国普林斯顿度过的,他仍被认为传承了以大卫·希尔伯特和赫尔曼·闵可夫斯基为代表的哥廷根大学学派的数学传统。 他的研究工作在理论物理上和在纯数学领域(如数论)等都有着一样杰出的贡献。他是20世纪最有影响力的数学家之一,也是普林斯顿高等研究院早期的重要成员。 外尔发表过的作品涉及时间、空间、物质、哲学、逻辑、对称性和数学史。 他是最早把广义相对论和电磁理论结合的人之一。当他同时代的数学家对昂利·庞加莱和希尔伯特的对数学的广泛涉猎的重要性缺乏重视的时候,外尔走得比任何人更远。迈克尔·阿蒂亚曾评价,他开始研究一个数学题目的时候,经常发现外尔已经在他之前有所贡献。(The Mathematical Intelligencer (1984), vol.6 no.1).

新!!: 多重线性代数和赫尔曼·外尔 · 查看更多 »

赫爾曼·格拉斯曼

赫尔曼·京特·格拉斯曼(Hermann Günther Graßmann,),出生於什切青,是一个德国博学者,在他生活的时代以语言学家身份闻名,今天以数学家身份而著称。他也是一位物理学家,新人道主义者,博学的学者,和出版家.

新!!: 多重线性代数和赫爾曼·格拉斯曼 · 查看更多 »

Tor函子

在交換代數中,Tor 函子是張量積的導函子。此函子起初是為了表述代數拓撲中的 Künneth 定理與普遍係數定理而定義。.

新!!: 多重线性代数和Tor函子 · 查看更多 »

李群

數學中,李群(Lie group,)是具有群结构的光滑微分流形,其群作用與微分结构相容。李群的名字源於索菲斯·李的姓氏,以其為連續變換群奠定基礎。1893年,法文名詞groupes de Lie首次出現在李的學生Arthur Tresse的論文第三頁中。.

新!!: 多重线性代数和李群 · 查看更多 »

泛性质

在数学的很多分支,经常用“在给定某些条件下存在唯一态射”这种形式的性质来定义一些构造。这种性质统称为泛性质(Universal property),有时也称为万有性。范畴论研究泛性质。 了解泛性质最好先研究一些例子。如:群积、直和、自由群、积拓扑、斯通-切赫紧致、张量积、反极限、直极限、核与上核、拉回、推出、等子等。.

新!!: 多重线性代数和泛性质 · 查看更多 »

流形

流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.

新!!: 多重线性代数和流形 · 查看更多 »

旋量

在數學幾何學與物理中,旋量是複向量空間中的的元素。旋量乃自旋群的表象,類似於歐幾里得空間中的向量以及更廣義的張量,當歐幾里得空間進行無限小旋轉時,旋量做相應的線性轉換。當如此一系列這樣的小旋轉組合成一定量的旋轉時,這些旋量轉換的次序會造成不同的組合旋轉結果,與向量或張量的情形不同。當空間從0°開始,旋轉了完整的一圈(360°),旋量發生了正負號變號(見圖),這個特徵即是旋量最大的特點。在一給定維度下,需要旋量才能完整地描述旋轉,如此引入了額外數量的維度。 在閔考斯基空間的情形,也可以定義出相似的旋量,其中狹義相對論的勞侖茲轉換扮演旋轉的角色。旋量最先是由埃利·嘉當於1913年引入幾何學。Quote from Elie Cartan: The Theory of Spinors, Hermann, Paris, 1966, first sentence of the Introduction section of the beginning of the book (before the page numbers start): "Spinors were first used under that name, by physicists, in the field of Quantum Mechanics.

新!!: 多重线性代数和旋量 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 多重线性代数和数学 · 查看更多 »

拓扑空间

拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.

新!!: 多重线性代数和拓扑空间 · 查看更多 »

重定向到这里:

多线性代数

传出传入
嘿!我们在Facebook上吧! »