之间埃米爾·阿廷和大卫·希尔伯特相似
埃米爾·阿廷和大卫·希尔伯特有(在联盟百科)4共同点: 代数,代數數論,德国,群。
代数
代数是一个较为基础的数学分支。它的研究对象有许多。诸如数、数量、代数式、關係、方程理论、代数结构等等都是代数学的研究对象。 初等代数一般在中學時讲授,介紹代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解變數的概念和如何建立多项式并找出它们的根。 代数的研究對象不僅是數字,还有各種抽象化的結構。例如整數集作為一個帶有加法、乘法和序關係的集合就是一個代數結構。在其中我們只關心各種關係及其性質,而對於「數本身是甚麼」這樣的問題並不關心。常見的代數結構類型有群、环、域、模、線性空間等。并且,代数是几何的总称,代数是还可以用任何字母代替的。 e.g.2-4+6-8+10-12+…-96+98-100+102.
代数和埃米爾·阿廷 · 代数和大卫·希尔伯特 ·
代數數論
在數學中,代數數論是數論的一支,其中我們將「數」的概念延伸,以解決具體的數論問題。我們在代數數論中考慮代數數,這類數是有理係數多項式的根。與此相關的概念是數域,這是有理數域的有限擴張。在此框架下能推廣整數為代數整數,並研究一個數域裡的代數整數。 代數整數在加法、減法與乘法下構成一個環,但整數的許多性質並不能推廣到一般數域裡的代數整數上,其中一個例子是素因數分解的唯一性(又稱算術基本定理),這是十九世紀數學家試圖證明費馬大定理時遇到的主要阻礙,然而代數數論的應用不僅止於此。數學中一些較深入的理論有助於讓我們了解代數數與代數整數的性質——包括伽羅瓦理論、伽羅瓦上同調、類域論、表示理論與L-函數的相關理論等等。 數論中的許多問題可藉由「模 p」(其中 p 為素數)來研究。這套技術導向p進數的建構,而p進數是局部域的例子;局部域的研究運用了一些研究數域時的相同方法,但是通常更容易處理。一般數域上的陳述常與各個局部域上的相應陳述有關,例如哈瑟原理:「一個有理係數二次方程在有理數域上有解,若且唯若它在實數上及在每個素數 p 之 p進數域上有解」。這類結果往往被稱作局部-整體原理,其中「局部」意指局部域,而「整體」意指數域。.
德国
德意志联邦共和国(Bundesrepublik Deutschland/),简称德国(Deutschland),是位於中西歐的联邦议会共和制国家,由16个-zh-hans:联邦州; zh-hant:邦;-组成,首都与最大城市为柏林。其国土面积约35.7万平方公里,南北距离为876公里,东西相距640公里,从北部的北海与波罗的海延伸至南部的阿尔卑斯山。气候温和,季节分明。德国人口约8,180万,为欧洲联盟中人口最多的国家,也是世界第二大移民目的地,仅次于美国。 在50万年前的舊石器時代晚期,海德堡人及其後代尼安德特人生活在今德國中部。自古典時代以來各日耳曼部族開始定居於今日德國的北部地區。公元1世紀時,有羅馬人著作的關於“日耳曼尼亞”的歷史記載。在公元4到7世紀的民族遷徙期,日耳曼部族逐漸向歐洲南部擴張。自公元10世紀起,德意志領土組成神聖羅馬帝國的核心部分。16世紀時,德意志北部地區成為宗教改革中心。在神聖羅馬帝國滅亡後,萊茵邦聯和日耳曼邦聯先後建立,1871年,在普魯士王國主導之下,多數德意志邦國統一成為德意志帝國,「德意志」開始做為國名使用。在第一次世界大戰和1918-1919年德國革命後,德意志帝國解體,議會制的威瑪共和國取而代之。1933年納粹黨獲取政權並建立獨裁統治,最終導致第二次世界大戰及系統性種族滅絕的發生。在戰敗並經歷同盟國軍事佔領後,德國分裂为德意志聯邦共和國(西德)和德意志民主共和國(東德)。在1990年10月3日重新統一成為現在的德國。国家元首为联邦总统,政府首脑則为联邦总理。 德國是世界大國之一,其國内生產總值以國際匯率計居世界第四,以購買力評價計居世界第五。其諸多工業工程和科技部門位居世界前列,例如全球馳名的德國車廠、精密部件等,為世界第三大出口國。德國為發達國家,生活水平居世界前列。德國人也以熱愛大自然聞名,都市綠化率極高,也是歐洲再生能源大國,是可持續發展經濟的樣板,除了強調環境保護與自然生態保育,在人為飼養活體的態度十分嚴謹,不但獲得大量外匯和資訊優勢,其動物保護法律管束、生命教育水準也是首屈一指的,在高等教育方面並提供免費大學教育,並具備完善的社會保障制度和醫療體系,催生出拜爾等大藥廠。 德国为1993年欧洲联盟的创始成员国之一,为申根区一部分,并于1999年推动欧元区的建立。德国亦为联合国、北大西洋公约组织、八国集团、20国集团及经济合作与发展组织成员。其军事开支总额居世界第九。 德語是歐盟境内使用人數最多的母語。德國文化的豐富層次和對世界的影響表現在其建築和美術、音樂、哲學以及電影等等。德國的文化遺產主要以老城為代表。另外國家公園和自然公園共計有上百處。.
埃米爾·阿廷和德国 · 大卫·希尔伯特和德国 ·
群
在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.
上面的列表回答下列问题
- 什么埃米爾·阿廷和大卫·希尔伯特的共同点。
- 什么是埃米爾·阿廷和大卫·希尔伯特之间的相似性
埃米爾·阿廷和大卫·希尔伯特之间的比较
埃米爾·阿廷有20个关系,而大卫·希尔伯特有142个。由于它们的共同之处4,杰卡德指数为2.47% = 4 / (20 + 142)。
参考
本文介绍埃米爾·阿廷和大卫·希尔伯特之间的关系。要访问该信息提取每篇文章,请访问: