之间土星和行星环相似
土星和行星环有(在联盟百科)14共同点: 天王星,太阳系,宇宙塵,土星環,美國科學促進會,類木行星,行星,衛星,洛希極限,潮汐力,木星,月球,海王星,旅行者2号。
天王星
天王星是從太陽系由内向外的第七顆行星,其體積在太陽系排名第三(比海王星大),質量排名第四(比海王星輕)。其英文名稱Uranus來自古希臘神話的天空之神烏拉諾斯(),是克洛諾斯的父親,宙斯的祖父。与在古代就为人们所知的五顆行星(水星、金星、火星、木星、土星)相比,天王星的亮度也是肉眼可見的,但由於較為黯淡以及緩慢的繞行速度而未被古代的觀測者认定为一颗行星。直到1781年3月13日,威廉·赫歇耳爵士宣布發現天王星,从而在太陽系的現代史上首度擴展了已知的界限。這也是第一顆使用望遠鏡發現的行星。天文學符號為、♅(♅,Unicode編碼U+2645) 天王星和海王星的內部和大氣構成不同於更巨大的氣體巨星,木星和土星。同樣的,天文學家設立了不同的「冰巨行星」分類來安置她們。天王星大氣的主要成分是氫和氦,還包含較高比例的由水、氨、甲烷等結成的「冰」,與可以探测到的碳氫化合物。天王星是太陽系內大气层最冷的行星,最低溫度只有49K(−224℃)。其外部的大气层具有複杂的雲層結構,水在最低的雲層內,而甲烷組成最高處的雲層。相比较而言,天王星的内部则是由冰和岩石所构成。 如同其他的巨行星,天王星也有環系統、磁層和許多衛星。天王星的環系統在行星中非常獨特,因為它的自轉軸斜向一邊,幾乎就躺在公轉太陽的軌道平面上,因而南極和北極也躺在其他行星的赤道位置上。從地球看,天王星的環像是環繞著標靶的圓環,它的衛星則像環繞著鐘的指針(雖然在2007年與2008年該環看來近乎水平)。在1986年,來自太空探测器航海家2號的影像资料顯示天王星實際上是一顆平平無奇的行星,在其可見光的影像中沒有出现像在其他巨行星所擁有的雲彩或風暴。然而,近年內,隨著天王星接近晝夜平分點,地球上的觀測者发现天王星有季節變化的迹象和漸增的天氣活動。天王星上的風速可以達到每秒250公尺。 在西方文化中,天王星是太陽系中唯一以希臘神祇命名的行星,其他行星都依照羅馬神祇命名。.
太阳系
太陽系Capitalization of the name varies.
宇宙塵
宇宙塵(Cosmic Dust)是由眾多細小粒子組成的一種固態塵埃,自宇宙大爆炸起,便四散在浩瀚宇宙之中。宇宙塵的組成包含矽酸鹽、碳等元素以及水分,部分來自彗星、小行星等星體的崩解而產生。 宇宙塵對一個天體的誕生亦有影響,例如一個星體崩壞後所產生的宇宙塵,在經過漫長的宇宙旅程後,可能與一個正在形成的星體撞上,於是又循環成為了一個新的星體。在太陽系中,木星、土星、天王星、海王星等行星的光環,即是由於在行星初形成時,碎裂的宇宙塵未能融為星球的主體,但卻又無法擺脫行星萬有引力的牽制而產生圍繞著星球的破碎物質。.
土星環
土星環是太陽系行星的行星環中最突出與明顯的一個,環中有不計其數的小顆粒,其大小從微米到米都有,軌道成叢集的繞著土星運轉。環中的顆粒主要成分都是水冰,還有一些塵埃和其它的化學物質。 雖然環的反射能夠增加土星的視星等(亮度),但從地球僅憑肉眼還是看不見環。在1610年,當望遠鏡第一次指向天空之際,伽利略雖然未能清楚的看出環的本質,但他還是成為觀察土星環的第一個人。在1655年,惠更斯成為第一個描述環是環繞土星的盤狀物的人。 雖然許多人都認為土星環是由許多微細的小環累積而成的(這個觀念可以回溯至拉普拉斯),並有少數真實的空隙。更正確的想法是這些環是有著同心但是在密度和亮度上有著極值的圓環盤。在叢集的尺度上,圓環之間有許多空洞的空間。 在環的中間有一些空隙:有兩條已經知道是與被埋藏在環中的衛星產生軌道共振引起的波動造成的,其它的空隙還不知道成因。穩定的共振,另一方面,也維繫了一些環長期的存在,像是泰坦環。.
美國科學促進會
美國科學促進會(American Association for the Advancement of Science,缩写为AAAS),創建於1848年9月20日,是世界最大的非營利科學組織,下設21個專業分會,所涉包括數學、物理学、化學、天文学、地理学、生物学等自然科學学科。現有265個分支機構和1000萬成員。《科學》雜誌的主辦者、出版者。.
類木行星
#重定向 氣態巨行星.
行星
行星(planet;planeta),通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同(由西向東)。一般來說行星需具有一定質量,行星的質量要足夠的大(相對於月球)且近似於圓球狀,自身不能像恆星那樣發生核聚變反應。2007年5月,麻省理工學院一組空间科學研究隊發現了已知最熱的行星(2040攝氏度)。 隨著一些具有冥王星大小的天體被發現,「行星」一詞的科學定義似乎更形迫切。歷史上行星名字來自於它們的位置(与恒星的相对位置)在天空中不固定,就好像它們在星空中行走一般。太陽系内肉眼可見的5顆行星水星、金星、火星、木星和土星早在史前就已經被人類發現了。16世紀後日心说取代了地心说,人類瞭解到地球本身也是一顆行星。望遠鏡被發明和萬有引力被發現後,人類又發現了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分類為类冥天体,属于矮行星的一种)還有為數不少的小行星。20世紀末人類在太陽系外的恆星系統中也發現了行星,截至2013年7月12日,人類已發現2000多顆太陽系外的行星。.
衛星
衛星,是環繞一顆行星按閉合軌道做周期性運行的天體。如地球的衛星是月球。不過,如果兩個天體的質量相當,它們所形成的系統一般稱為雙行星系統,而不是一顆行星和一顆天然衛星。通常,兩個天体的质量中心都處於行星之內。因此,有天文學家認為冥王星與冥衛一應該歸類為雙行星,但2005年發現兩顆新的冥衛,使問題複雜起來了。.
洛希極限
洛希極限(Roche limit)是一個天體自身的重力与第二個天體造成的潮汐力相等时的距離。當两个天體的距離少於洛希極限,天體就會傾向碎散,繼而成為第二個天體的環。它以首位計算這個極限的人愛德華·洛希命名。 洛希極限常用于行星和环绕它的衛星。有些天然和人工的衛星,儘管它們在它們所環繞的星體的洛希極限內,卻不至成碎片,因為它們除了引力外,還受到其他的力。木衛十六和土衛十八是其中的例子,它們和所環繞的星體的距離少於流體洛希極限。它們仍未成為碎片是因為有彈性,加上它們並非完全流體。在這個情況,在衛星表面的物件有可能被潮汐力扯離衛星,要視乎物件在衛星表面哪部分——潮汐力在兩個天體中心之間的直線最強。 一些內部引力較弱的物體,例如彗星,可能在經過洛希極限內時化成碎片。蘇梅克-列維9號彗星就是好例子。它在1992年經過木星時分成碎片,1994年落在木星上。 現時所知的行星環都在洛希極限之內。.
潮汐力
潮汐力或引潮力是萬有引力的效果,它使得潮汐發生。它源於在一個星體的直徑上各點的引力場不相等。 當一個天體甲受到天體乙的引力的影響,力場在甲面對乙跟背向乙的表面的作用,有很大差異。這使得甲出現很大應變,甚至會化成碎片(參見洛希極限)。除非引力場完全相等,否則這些應變還是會出現。 潮汐力會改變天體的形狀而不改變其體積。地球的每部分都受到月球的引力影響而加速,在地球的觀察者因此看到海洋內的水不斷重新分布。 當天體受潮汐力而自轉,內部摩擦力會令其旋轉動能化為內能,內能繼而轉成熱。若天體相當接近系統內質量最大的天體,自轉的天體便會以同一面朝質量最大的天體公轉,即潮汐鎖定,例如月球和地球。.
木星
|G1.
月球
没有描述。
海王星
海王星是太陽系八大行星中距离太阳最远的,體積是太陽系第四大,但質量排名是第三。海王星的質量大約是地球的17倍,而類似雙胞胎的天王星因密度較低,質量大約是地球的14倍。海王星以羅馬神話中的尼普顿(Neptunus)命名,因為尼普顿是海神,所以中文譯為海王星。天文學的符號(♆,Unicode編碼U+2646),是希臘神話的海神波塞頓使用的三叉戟。 作爲一個冰巨行星,海王星的大氣層以氫和氦為主,還有微量的甲烷。在大氣層中的甲烷,只是使行星呈現藍色的一部分原因。因為海王星的藍色比有同樣份量的天王星更為鮮豔,因此應該還有其他成分對海王星明顯的顏色有所貢獻。 海王星有太陽系最強烈的風,測量到的風速高達每小時2,100公里。 1989年航海家2號飛掠過海王星,對南半球的大黑斑和木星的大紅斑做了比較。海王星雲頂的溫度是-218 °C(55K),因為距離太陽最遠,是太陽系最冷的地區之一。海王星核心的溫度約為7,000 °C,可以和太陽的表面比較,也和大多數已知的行星相似。 海王星在1846年9月23日被發現, 是唯一利用數學預測而非有計畫的觀測發現的行星。天文學家利用天王星軌道的攝動推測出海王星的存在與可能的位置。迄今只有航海家2號曾經在1989年8月25日拜訪過海王星。2003年,美國國家航空暨太空總署提出有如卡西尼-惠更斯號科學水準的海王星軌道探測計畫,但不使用熱滋生反應提供電力的推進裝置;這項計劃由噴射推進實驗室和加州理工學院一起完成。.
旅行者2号
旅行者2号(Voyager 2)是一艘於1977年8月20日發射的美國太空總署無人星際太空船。它與其姊妹船旅行者1號基本上設計相同。不同的是旅行者2號循一個較慢的飛行軌跡,使它能夠保持在黃道(即太陽系眾行星的軌道水平面)之中,藉此在1981年的時候透過土星的引力加速飛往天王星和海王星。正因如此,它並沒有像它的姊妹旅行者1號一樣能夠如此靠近土衛六。但它因此而成為了第一艘造訪天王星和海王星的太空船,完成了藉這個176年一遇的行星幾何排陣而造訪四顆氣體巨行星的機會。 旅行者2號被認為是從地球發射的太空船中最多產的一艘太空船,皆因在美國太空總署對其後的伽利略號和卡西尼-惠更斯號等的計劃上收緊花費之下,它仍能以強大的攝影機及大量的科學儀器造訪四顆氣體巨行星(木星、土星、天王星、海王星)及其衛星。.
上面的列表回答下列问题
- 什么土星和行星环的共同点。
- 什么是土星和行星环之间的相似性
土星和行星环之间的比较
土星有184个关系,而行星环有26个。由于它们的共同之处14,杰卡德指数为6.67% = 14 / (184 + 26)。
参考
本文介绍土星和行星环之间的关系。要访问该信息提取每篇文章,请访问: