徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

反营养物质

指数 反营养物质

反营养物质是天然或者人工合成的化合物,它们可以干扰人体对营养素的吸收。营养学研究主要关注在食物和饮品中常见的反营养物质。.

39 关系: 基因工程发酵多酚康乃爾大學哥伦布 (俄亥俄州)凝集素皂苷糖类糖苷键烹饪營養素鞣质螯合物荚果草酸草酸盐菠菜驯养麦芽黄酮类化合物胰蛋白酶胃蛋白酶脂類脂酶膳食纖維酶抑制剂蛋白质蛋白酶抗代谢物植酸淀粉淀粉酶木薯

基因工程

基因工程(genetic engineering,又称为遺傳工程、转基因、基因修饰)是一组使用生物技术直接操纵有机体基因组、用于改变细胞的遗传物质的技术。包括了同一物种和跨物种的基因转移以产生改良的或新的生物体。可以通过使用分子克隆技术分离和复制需要的遗传物质以产生DNA序列,或通过合成DNA,然后插入宿主生物体,以此将新的遗传物质插入宿主基因组中。可以使用核酸酶除去或“敲除”基因。基因靶向是使用同源重组来改变内源基因的不同技术,并且可以用于缺失基因,去除外显子,添加基因或引入点突变。 通过基因工程产生的生物体被认为是转基因生物体(GMO)。第一种转基因生物是1973年产生的细菌和1974年的转基因小鼠。利用细菌产生胰岛素在1982年商业化,转基因食品自1994年以来一直销售。作为宠物设计的第一种转基因生物GloFish于2003年12月首先在美国销售。 遗传工程技术已经应用于许多领域,包括研究、农业、工业生物技术和医学。用于洗衣洗涤剂和药物如胰岛素和人生长激素的酶现在在转基因(GM)细胞中制造,实验性转基因细胞系和转基因动物例如小鼠或斑马鱼正用于研究目的,并且转基因作物已经商业化。.

新!!: 反营养物质和基因工程 · 查看更多 »

发酵

发酵作用(fermentation)有时也寫作醱酵,其定义由使用场合的不同而不同。通常所说的发酵,多是指生物体对于有机物的某种分解过程。发酵是人类较早接触的一种生物化学反应,如今在食品工业、生物和化学工业中均有广泛应用。其也是生物工程的基本过程,即发酵工程。对于其机理以及过程控制的研究,还在继续。.

新!!: 反营养物质和发酵 · 查看更多 »

多酚

多酚(polyphenol),亦作聚酚,是指一组植物中化学物质的统称,因具有多个酚基团而得名。多酚在一些植物中起到了呈现颜色的作用,如秋天的叶子。 多酚类物质具有很强的抗氧化作用,常見的多酚化合物有:兒茶素、綠原酸、異黃酮、花青素、可可多酚、薑黃素、檸檬黃素、槲皮素(quercetin) 、芸香苷(rutin)、白藜蘆醇等。绿茶、葡萄及深色的蔬果都是多酚类物质的一个来源。.

新!!: 反营养物质和多酚 · 查看更多 »

康乃爾大學

#重定向 康奈尔大学.

新!!: 反营养物质和康乃爾大學 · 查看更多 »

哥伦布 (俄亥俄州)

哥伦布(Columbus )是美国俄亥俄州的州府,它于1812年建城,位于塞奥托河与奥兰滕吉河的聚会处。哥伦布从1816年开始成為俄亥俄州州府,現為美國第15大城市。 哥伦布几乎位于俄亥俄州的地理中心,它还是富兰克林县政府所在地,不过它城市的部分地区也延伸入特拉华县和費爾菲爾德縣。.

新!!: 反营养物质和哥伦布 (俄亥俄州) · 查看更多 »

凝集素

凝集素(Lectins)是一種對醣蛋白上的醣類具有高度特異性的结合蛋白。在實驗室中,經常被用來分離、純化醣蛋白。 Lectin的名字的由來是來自於拉丁文中的legere,代表選擇的意思。儘管它們最初是在一百多年前於植物中發現,但是如今認為它們在自然界中普遍存在。一般普遍認為最早關於血球凝集素的敘述,來自於1888年彼得·赫曼·斯蒂尔马克在塔尔图大学(專制時期的俄國最老的大學之一)发表的博士論文。血球凝集素,也具有高度毒性,由斯蒂尔马克自蓖麻的種子純化出來(Ricinus communis)而命名為蓖麻毒素(Ricin)。然而大部分的凝集素基本上在作用時不具有酵素活性以及不造成免疫反應。凝集素在自然中到處存在,它們可以結合游離溶液中的醣類,或者特定蛋白質結構的某一部分上。它們凝集細胞并(或者)參與糖结合(glycoconjugate)作用。 雖然人們認為在植物中凝集素的功能是結合細胞表面上的醣蛋白,然而在動物中它的功能也包括結合可溶性的細胞外或細胞內醣蛋白。舉例來說,有一種凝集素被發現在哺乳類动物肝細胞的表面上,能夠專一性的識別乳糖殘基。人們相信這些細胞表面上的接受器是負責將循環系統中的特定醣蛋白移除。另一個例子是甘露糖-6-磷酸接受器能夠識別含有此種殘基的水解酵素,隨後標定這些蛋白將其送至溶小體。它們提供許多不同的生物功能——從細胞附著的調控,到醣蛋白合成,以及血液中蛋白質的濃度。凝集素也能夠藉由識別僅在病原中發現或是無法進入宿主細胞的的醣類而在免疫系統中扮演重要的角色。 純化的凝集素對於臨床应用非常重要,因為它能夠用來鑑定血型。有些存在人類紅血球上的醣脂質以及醣蛋白能夠經通过凝集素來鑑定。一種來自於雙花扁豆(Dolichos biflorus)的凝集素,經鑑定後发现可识别A1血型。來自於植物Ulex europaeus的凝集素,經鑑定後发现可识别H血型抗原,而來自於植物Vicia graminea的凝集素则可识别N血型抗原。 凝集素在植物中的真正功能還有待研究,而是否僅具細胞附著功能依然還有疑問。凝集素在種子中大量表現(通常自種子中純化),并且隨著植物生長而減少,这顯示其在植物發芽或種子自我生存中扮演了重要角色。 凝集素被視為免疫系統中的直接演化前身,而且它們至今依然在此扮演重要角色 - lectin complement activation pathway, Mannose binding lectin, S,P,E lectins, etc.

新!!: 反营养物质和凝集素 · 查看更多 »

皂苷

-- 皂苷(Saponin),皂苷是一類化合物尤其是發現於各不同植物品種中。更具體地現象學中它們具有兩親性甙組合(親水與親脂),在水溶液中搖動的時候,它們產生肥皂般的泡沫,在結構上通過具有一個或多個親水糖苷部分與一個親脂性三萜衍生物相結合。是苷元为三萜或螺旋甾烷类化合物的一类糖苷,主要分布于陆地维管植物中,也少量存在于海星和海参等海洋生物中。 许多中草药如人参、远志、桔梗、甘草、知母和柴胡等的主要有效成分都含有皂苷。 “皂苷”一词由英文名 Saponin 意译而来,英文名则源于拉丁语的 Sapo,意为肥皂。.

新!!: 反营养物质和皂苷 · 查看更多 »

是卤族化学元素,化学符号是I,原子序数是53。.

新!!: 反营养物质和碘 · 查看更多 »

糖类

醣類(Carbohydrate)又称碳水化合物,是多羟基醛或多羟基酮及其缩聚物和某些衍生物的总称,一般由碳、氫與氧三種元素所組成,廣布于自然界。醣類的另一個名稱为“碳水化合物”,其由來是根据生物化学家先前發現一类物质可写成经验分子式:Cn(H2O)n,其氢与氧元素的比例始终为2:1,故以为醣類是碳和水的化合物;但后来的发现证明了许多糖类并不符合上述分子式,如:鼠李糖(C6H12O5);而有些物質符合上述分子式却不是糖类,如甲醛(CH2O)等。醣類為人體之重要的營養素,主要分成三大類:單醣、雙醣和多醣。在一般情況下,單醣和雙醣是較小的(低分子量)的碳水化合物,通常稱為--。例如,葡萄糖是單醣,蔗糖和乳糖是雙醣(見圖示)。 糖类在生物体上扮演著众多的角色,像多醣可作为儲存養分的物質,如澱粉和糖原;或作为動物外骨骼和植物細胞的細胞壁,如:甲殼素和纖維素;另如五碳醛醣的核糖是構成各種輔因子的不可或缺失之物質,如ATP、FAD和NAD)也是一些遺傳物質分子的骨幹(如 DNA和 RNA)。醣類的眾多衍生物同時也與免疫系統、受精、預防疾病、血液凝固和生長等有極大的關聯。 在食品科學和其他非正式的場合中,碳水化合物通常是指:富有澱粉(如五穀類、麵包或麵食)或簡單的醣類的食物(如食糖)。.

新!!: 反营养物质和糖类 · 查看更多 »

糖苷键

糖苷键(Glycosidic bond,旧称配糖键)是指特定類型的化學鍵,連接糖苷分子中的非糖部分(即苷元)與糖基,或者糖基与糖基。含有配糖鍵的物質稱為糖苷(或配糖體)。 根據與糖基異頭碳原子相連的原子的不同,糖苷鍵一般可分為氧苷鍵、氮苷鍵、硫苷鍵和碳苷鍵等。右圖中核糖與腺嘌呤之間的糖苷鍵是氮苷鍵。.

新!!: 反营养物质和糖苷键 · 查看更多 »

烹饪

烹饪,又称烹調,指的是將食物處理製作為餐點的方法。一個好的菜餚,色香味形俱佳,不但讓人在食用時感到滿意,而且能讓食物的營養更容易被人體吸收。 中文中廣義的烹飪,可泛指料理與烹煮等意,較無明確分野。日語中與烹飪同義的「料理」一詞也常在中文地區使用,而「料理」又可指「菜餚」、「菜色」等意。.

新!!: 反营养物质和烹饪 · 查看更多 »

營養素

营养素(nutrient,又称为养分)是人体所需的一些物质。主要分为人体需求量较大的宏量营养素和需求量较小的微量营养素。其中宏量营养素包括碳水化合物、脂肪、纤维素、蛋白质以及水;微量营养素包括矿物质和维生素,而維生素又可細分為脂溶性維生素與水溶性維生素兩大類。脂溶性維生素包括有:維生素A、D、E、K;水溶性維生素則包括有:維生素B1、B2、B6、B12以及菸鹼酸、葉酸、維生素C。 宏量营养素,除纤维素和水之外,主要为人体提供能量,以焦耳(jouls)或者卡路里(calories)来衡量。每克碳水化合物或蛋白质提供4千卡能量,每克脂肪提供9千卡能量。其他营养素,包括纤维素、水、矿物质和维生素,不提供能量,但在机体的生理活动中具有重要的作用。.

新!!: 反营养物质和營養素 · 查看更多 »

鞣质

鞣质(tannin)音译作单宁或丹宁,通称鞣酸,是植物细胞的单宁体中的一种防衛用化学成分,用來封鎖蚜蟲的口腔以收防止蚜蟲的攻擊之效,鞣质也可以保护植物免受紫外线的伤害。.

新!!: 反营养物质和鞣质 · 查看更多 »

螯合物

螯合物(Chelation)是配合物的一种,在螯合物的结构中,一定有一个或多个多齿配体提供多对电子与中心体形成配位键。“螯”指螃蟹的大钳,此名称比喻多齿配体像螃蟹一样用两只大钳紧紧夹住中心体。 螯合物通常比一般配合物要稳定,其结构中经常具有的五或六元环结构更增强了稳定性。正因为这样,螯合物的稳定常数都非常高,许多螯合反应都是定量进行的,可以用来滴定。使用螯合物还可以掩蔽金属离子。 可形成螯合物的配体叫螯合剂。常见的螯合剂如下:.

新!!: 反营养物质和螯合物 · 查看更多 »

荚果

荚果是果实的一种类型,属于单果,是豆科植物特有的果实类型,心皮只有一枚(單心皮)许多荚果以及其中包含的种子被人类当作蔬菜、粮食或中药食用,如大豆、豌豆、槐树角等,常见的荚果包括紫花苜蓿(alfalfa,原产于伊朗),三叶草属(clover),豌豆(peas),豆类(beans),鹰嘴豆(chickpeas),小扁豆(lentils),羽扇豆(lupin bean), mesquite, 长角豆(carob),黄豆(soybeans),花生(peanuts)以及酸豆(tamarind)。荚果由单心皮雌蕊发育而成,在发育过程中沿心皮愈合处形成腹缝线,与腹缝线相对处形成背缝线,一些荚果在成熟之后會沿腹縫線和背缝线开裂(成熟後分裂成兩片),将种子崩散,荚果内一般含多粒种子沿着腹缝线着生,偶见仅有一枚种子的荚果,如紫穗槐、水黃皮。荚果的果皮多样,有些物种表面光滑如豌豆,有些物种表面被毛如大豆,有些果皮肉质如槐,荚果萼片宿存,着生于果蒂一侧。 有些種類的莢果成熟後,會呈現一節節斷落的現象,稱節莢果,例如山螞蝗屬的豆科稙物(蠅翼草)。 其他如鳳凰樹、黃蝴蝶、羊蹄甲、刺桐、相思樹、水黃皮、盾柱木、阿勃勒等都屬於莢果。 Category:被子植物 category:果实.

新!!: 反营养物质和荚果 · 查看更多 »

草酸

草酸(英文:Oxalic acid,全称酢浆草酸),也称乙二酸,是一種強有機酸,化學式為H2C2O4。常见的草酸通常含有两分子的结晶水(H2C2O4·2H2O)。草酸在菠菜和植物大黃中廣泛存在。.

新!!: 反营养物质和草酸 · 查看更多 »

草酸盐

草酸盐是草酸形成的盐类,含有草酸根离子(C2O42−或(COO)22−)。由于草酸是二元酸,因此草酸盐分为正盐草酸盐与酸式盐草酸氢盐两类,后者含有HC2O4−。 草酸根离子(见右图)可作配体,与很多金属离子形成配合物,尤其是螯合物。该离子中,含有一个平面的八电子π体系,电子稳定性特别突出。它属于还原性阴离子,可被氧化剂,如高锰酸钾氧化为二氧化碳。 草酸盐有毒,人吞食可能發生草酸盐中毒,导致肾脏疾病甚至死亡。草酸根离子可沉淀钙离子,生成不溶于水的草酸钙。.

新!!: 反营养物质和草酸盐 · 查看更多 »

菠菜

菠菜(学名:Spinacia oleracea),又名菠薐、鹦鹉菜、红根菜及飛龍菜,是藜科的一种植物,性喜冷凉气候,耐寒性强,适于沙壤或粘土壤生长,根和叶子可以食用。菠菜于7世纪左右由尼泊尔传入中国,古代称“菠薐菜”(“菠薐”係源于古国名palinga,即今尼泊尔);在潮汕地區,因“菠薐”音近“飛龍”而被訛為“飛龍菜”。现已是一道家常菜。菠菜常用来烧汤,凉拌,单炒,和配荤菜合炒或垫盘。 中国常吃的菠菜比较小,有时整棵连根一起凉拌,嫩红的根和碧绿的叶子,非常漂亮。菠菜一年四季都可以收获,通常春天的菠菜比较嫩小,适合凉拌,而秋天的粗大,比较适合熟食。但是现在有很多温室培养的菠菜,一年到头都是一样的。.

新!!: 反营养物质和菠菜 · 查看更多 »

驯养

#重定向 驯化.

新!!: 反营养物质和驯养 · 查看更多 »

麦芽

麦芽(Malt)是将谷物浸泡在水中,促使其发芽,利用其发芽产生的酶,将谷粒中的淀粉转化为麦芽糖,然后再迅速地加热干燥,所产生的产品。,工业中一般多用大麦,也有用其他谷物的。 麦芽浸泡后,麦芽糖溶解产生的溶液称为“醪液”,主要应用在酿造啤酒、威士忌、杜松子酒等,以及制作饴糖、麦乳精等食品。 麦芽也是一种中药,功能为消食健胃、回奶等。在中國,以小麥、大麥作為原料的,稱麥芽;以稻米、小米為原料者,稱穀芽。.

新!!: 反营养物质和麦芽 · 查看更多 »

黄酮类化合物

酮类化合物(Flavonoid,又称类黄酮)基于2-苯基色原酮-4-酮(2-苯基-1--4-酮)骨架的黄酮类化合物,如右图所示,基本母核为2-苯基色原酮类化合物,现在则泛指两个具有酚羟基的苯环通过中央三碳原子相互连接的一系列化合物。他们來自於水果、蔬菜、茶、葡萄酒、種子或是植物根。雖然他們不被認為是維生素,但是在生物體內的反應裡,被認為有營養功能,曾被称为“维生素P”:例如具有抗氧化或抗發炎反應功效。也被認為可以抵抗或是減緩腫瘤的形成。 可可亞,特別是一些黑巧克力,內含黄酮类表儿茶素成分,其抗氧化能力是紅葡萄酒或是綠茶的二到三倍。表儿茶素也促進血液循環,也被認為有助於對於心臟血管健康。.

新!!: 反营养物质和黄酮类化合物 · 查看更多 »

胰蛋白酶

胰蛋白酶(trypsin)是一種酶。 胰蛋白酶在小腸工作,它會將蛋白質水解為肽,進而分解為氨基酸。這是蛋白質能被人體吸收的必要過程。這種酶的作用原理和其他絲氨酸蛋白酶差不多。 胰蛋白酶的最佳pH值約為8,溫度約為37℃。 胰臟製造的是沒有活性的胰蛋白酶原。它分泌到小腸後,小腸內的肠肽酶會活化它,令它成為胰蛋白酶。已經變成胰蛋白酶的,能活化更多胰蛋白酶原,這種過程即自動催化,所以只需少量肠肽酶便能開始消化反應。這種過程能避免胰臟被活化的酶消化。.

新!!: 反营养物质和胰蛋白酶 · 查看更多 »

胃蛋白酶

胃蛋白酶(pepsin)是一种消化性蛋白酶,由胃部中的胃粘膜主细胞(gastric chief cell)所分泌,功能是将食物中的蛋白质分解为小的肽片段。胃蛋白酶的前体被称为胃蛋白酶原。.

新!!: 反营养物质和胃蛋白酶 · 查看更多 »

钙(Calcium)是一種化学元素。其化学符号是Ca,原子序数是20。鈣是银白色的碱土金属,具有中等程度的軟性。雖然在地殼的含量也很高,為地殼中第五豐富的元素,占地殼總質量3%,因其化學活性頗高,可以和水或酸反應放出氫氣,或是在空氣中便可氧化(形成緻密氧化層(氧化鈣)),因此在自然界多以離子狀態或化合物形式存在,而沒有单质存在。在工業的主要礦物來源如石灰岩、石膏等,在建筑(水泥原料)、肥料、制鹼、和医疗上用途佷广。.

新!!: 反营养物质和钙 · 查看更多 »

铁是一种化学元素,它的化学符号是Fe,它的原子序数是26,它的相对原子质量是56。它是过渡金属的一种。铁是最常用的金属,是地球外核及內核的主要成份,是地殼上豐度第四高的元素和第二高的金屬。鐵常出現在类地行星中,因為鐵是高質量恆星核融合後的產物,鎳-56是放熱核融合反應的最後一個產物,之後會衰變成最常見的鐵同位素。 铁和其他8族元素相同,其氧化態範圍很廣,由−2到+6,但其中+2和+3是最常見的氧化態。在流星体及低氧的環境下,鐵會以单质的形式存在,但是鐵很容易和氧氣和水反應。鐵的表面是有光澤的銀灰色,但在空氣中鐵會反應生成水合的氧化鐵,一般稱為铁锈。許多金屬在氧化後會形成钝化的氧化層,保護內部的金屬不被氧化,但氧化鐵的密度較鐵要低,因此氧化鐵會剝落,無法保護內部的鐵不受腐蝕。.

新!!: 反营养物质和铁 · 查看更多 »

铜(copper)是化学元素,化学符号Cu(来自cuprum),原子序数29。纯铜是柔软的金属,表面刚切开时为红橙色帶金屬光澤、延展性好、导热性和导电性高,因此在电缆和电气、电子元件是最常用的材料,也可用作建筑材料,以及組成众多種合金。铜合金机械性能优异,电阻率很低,其中最重要的是青铜和黄铜。此外,铜也是耐用的金属,可以多次回收而无损其机械性能。 人类使用铜及其合金已有数千年历史。古罗马时期铜的主要开采地是塞浦路斯,因此最初得名cyprium(意为塞浦路斯的金属),后来变为cuprum,这是copper、cuivre和Kupfer的来源。二价铜盐是常见的铜化合物,常呈蓝色或绿色,是蓝铜矿和绿松石等矿物颜色的来源,历史上曾广泛用作颜料。铜质建筑结构受腐蚀后会产生铜绿(碱式碳酸铜)。装饰艺术主要使用金属铜和含铜的颜料。 铜是所有生物所必需的微量膳食矿物质,因为它是呼吸酶复合体细胞色素c氧化酶的关键组分。软体动物和甲壳亚门动物的血液色素血蓝蛋白中含有铜。鱼类和其他哺乳动物的血液中则是含铁的复合物血红蛋白。铜在人体中主要分布于肝脏、肌肉和骨骼中。铜的化合物可用作、杀真菌剂和木材防腐剂。.

新!!: 反营养物质和铜 · 查看更多 »

锌(zinc)是一种化学元素,它的化学符号是Zn,它的原子序数是30,相对原子质量是65.39,是一种浅灰色的过渡金属;鋅由於形、色類似鉛,故也稱為亞鉛,古稱倭鉛。 外觀呈現銀白色,主要用途為鍍鋅,在現代工業中對於電池製造上有不可磨滅的地位,最具代表性之用途為「鍍鋅鐵板」,該技術被廣泛用於汽車、電力、電子及建築等各種產業中,於生活中相當重要的金屬。.

新!!: 反营养物质和锌 · 查看更多 »

脂類

脂類(英語:Lipid),又稱脂質,这是一类不溶于水而易溶于脂肪溶剂(醇、醚、氯仿、苯)等非极性有机溶剂,由脂肪酸与醇作用脱水缩合生成的酯及其衍生物统称为脂类,其中包括脂肪、蠟、类固醇、脂溶性維生素(如維生素A,D,E和K)、、、磷脂等。它的主要生理功能包括儲存能量、構成細胞膜以及膜的訊息傳導等。如今,脂类已经被用于美容和食品工业,以及纳米技术。 脂質可以廣義定義為疏水性或雙親性小分子;某些脂質因為其雙親性的特質(兼具親水性與疏水性),能在水溶液環境中形成囊泡、脂質體或膜等構造。生物體內的脂質完全或部分源自兩種截然不同的生物次單元:酮酸基與異戊二烯。由此,脂質可以概分為八類:脂肪酸、甘油酯、甘油磷脂、鞘脂(神經脂質)、、聚酮类(由酮乙基次單元聚合而成)、固醇脂类,以及孕烯醇酮脂类(由異戊二烯次單元縮合聚合而成)。 脂類常被視為是脂肪的同義詞,但脂肪只是一種稱為三酸甘油脂的脂類。脂類也包括脂肪酸及其衍生物,包括單酸甘油酯、二酸甘油酯、磷脂等,也包括其他含有固醇的代謝產物,像是膽固醇。雖然人類和其他動物有許多不同的代謝方式,可以切斷脂肪鏈及合成脂質,不過仍有一些必需脂質無法自行合成,需要在食物中攝取。 有生物以前脂質的化學反應,以及原始生命體的形成,現已認為是生命起源模型中的關鍵。.

新!!: 反营养物质和脂類 · 查看更多 »

脂酶

脂酶,是一种催化脂类的酯键水解反应的水溶性酶。因此,脂酶是酯酶下的一个亚类。 脂酶存在于基本上所有的生物体中,它在对脂类(如甘油三酸酯、脂肪、油等)的消化、运输和剪切中发挥着关键作用。编码脂酶的基因甚至也存在于某些病毒中。.

新!!: 反营养物质和脂酶 · 查看更多 »

膳食纖維

膳食纖維是指不能被人體消化道酶分解的植物源食物成分,主要是多醣类及木質素。可分为两类:.

新!!: 反营养物质和膳食纖維 · 查看更多 »

镁(Magnesium)是一种化学元素,它的化学符号是Mg,它的原子序数是12,是一種银白色的碱土金属。鎂是在地球的地殼中第八豐富的元素,約佔2%的質量,亦是宇宙中第九多元素。.

新!!: 反营养物质和镁 · 查看更多 »

酶抑制剂

酶抑制剂是一类可以结合酶并降低其活性的分子。由于抑制特定酶的活性可以杀死病原体或校正新陈代谢的不平衡,许多相关药物就是酶抑制剂。一些酶抑制剂还被用作除草剂或农药。并非所有能和酶结合的分子都是酶抑制剂,酶激活剂也可以与酶结合并提高其活性。大概可分為競爭性抑制劑及。.

新!!: 反营养物质和酶抑制剂 · 查看更多 »

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

新!!: 反营养物质和蛋白质 · 查看更多 »

蛋白酶

蛋白酶(protease)是生物體內的一類酶(酵素),它們能夠分解蛋白質。分解方法是打斷那些將氨基酸連結成多肽鏈的肽鍵。 抑制蛋白酶活性的小分子化合物被称蛋白酶抑制剂。许多病毒蛋白酶的抑制剂是很有效的抗病毒药。.

新!!: 反营养物质和蛋白酶 · 查看更多 »

抗代谢物

抗代谢物(Antimetabolite)指化学结构与天然代谢产物相似的化合物,在代谢反应中能与正常代谢产物相拮抗,减少正常代谢物参与反应的机会,抑制正常代谢过程。.

新!!: 反营养物质和抗代谢物 · 查看更多 »

植酸

植酸(Phytic acid,又称为肌醇六磷酸)在多种植物组织(特别是米糠与种子)中作为磷的主要储存形式,其结构是肌醇的6个羟基均被磷酸酯化生成的肌醇衍生物。然而人与非反刍动物是不能消化植酸的,因此它对于膳食来说既不是肌醇的来源也不是磷酸的来源。.

新!!: 反营养物质和植酸 · 查看更多 »

淀粉

淀粉(starch, amylum)是由通過糖苷鍵連接的大量葡萄糖單元組成的聚合碳水化合物,属于一种多醣。制造淀粉是绿色植物贮存能量的一种方式。淀粉也是人类饮食中最常见的碳水化合物,广泛存在于马铃薯,小麦,玉米,大米,木薯等主食中。 纯淀粉是一种白色,无味,无臭的粉末,不溶于冷水或酒精,分子式为(C6H10O5)n。淀粉因分子内氢键卷曲成螺旋结构的不同,可分为直链淀粉(糖淀粉)和支链淀粉(胶淀粉)。前者为无分支的螺旋结构;后者以24~30个葡萄糖残基以α-1,4-糖苷键首尾相连而成,在支链处为α-1,6-糖苷键。直链淀粉遇碘呈蓝色,支链淀粉遇碘呈紫红色。这是由于淀粉螺旋中央空穴恰能容下碘分子,由于范德华力,两者形成一种蓝黑色錯合物。实验证明,单独的碘分子不能使淀粉变蓝,实际上使淀粉变蓝的是三碘阴离子(I3-)。 淀粉在食品工业中被加工以产生多种糖。淀粉在温水中溶解产生糊精,这可以用作增稠剂,硬化則作為粘接剂。淀粉在非食品工业最广泛的用途是在造纸过程中作为粘合剂。.

新!!: 反营养物质和淀粉 · 查看更多 »

淀粉酶

淀粉酶(拼音:diàn-fěn méi;注音:ㄉㄧㄢˋ ㄈㄣˇ ㄇㄟˊ;法语, 德语, 英文:Amylase)是一种水解酶,是目前发酵工业上应用最广泛的一类酶。淀粉酶一般作用于可溶性淀粉、直链淀粉、糖原等α-1,4-葡聚糖,水解α-1,4-糖苷键的酶。根据作用的方式可分为α-淀粉酶(EC3.2.1.1.)与β-淀粉酶(EC3.2.1.2.)。 α-淀粉酶广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物。微生物的酶几乎都是分泌性的。此酶以Ca2+为必需因子并作为稳定因子,既作用于直链淀粉,亦作用于支链淀粉,无差别地切断α-1,4-链。因此,其特征是引起底物溶液粘度的急剧下降和碘反应的消失,最终产物在分解直链淀粉时以麦芽糖为主,此外,还有麦芽三糖及少量葡萄糖。另一方面在分解支链淀粉时,除麦芽糖、葡萄糖外,还生成分支部分具有α-1,6-键的α-极限糊精。一般分解限度以葡萄糖为准是35-50%,但在细菌的淀粉酶中,亦有呈现高达70%分解限度的(最终游离出葡萄糖)。 β-淀粉酶与α-淀粉酶的不同点在于从非还原性末端逐次以麦芽糖为单位切断α-1,4-葡聚糖链。主要见于高等植物中(大麦、小麦、甘薯、大豆等),但也有报告在细菌、牛乳、霉菌中存在。对于象直链淀粉那样没有分支的底物能完全分解得到麦芽糖和少量的葡萄糖。作用于支链淀粉或葡聚糖的时候,切断至α-1,6-键的前面反应就停止了,因此生成分子量比较大的极限糊精。从上述的α-淀粉酶和β-淀粉酶的作用方式,分别提出α-1,4-葡聚糖-4-葡萄糖水解酶(α-1,4-glucan 4-glucanohydrolase)和 α-1,4-葡聚糖-麦芽糖水解酶(α-1,4-glucan maltohydrolase)的名称等而被使用。.

新!!: 反营养物质和淀粉酶 · 查看更多 »

木薯

木薯(學名:Manihot esculenta),又称树薯,是一種大戟科木薯属植物,原產於南美洲 。.

新!!: 反营养物质和木薯 · 查看更多 »

重定向到这里:

抗營養素

传出传入
嘿!我们在Facebook上吧! »