之间卡爾·弗里德里希·高斯和卡爾·雅可比相似
卡爾·弗里德里希·高斯和卡爾·雅可比有(在联盟百科)4共同点: 二次互反律,波恩哈德·黎曼,数学,数学家。
二次互反律
在数论中,特别是在同余理论里,二次互反律(Law of Quadratic Reciprocity)是一个用于判别二次剩余,即二次同余方程x^2 \equiv p \pmod q 之整数解的存在性的定律。二次互反律揭示了方程x^2 \equiv p \pmod q 可解和 x^2 \equiv q \pmod p 可解的简单关系。运用二次互反律可以将模数较大的二次剩余判别问题转为模数较小的判别问题,并最后归结为较少的几个情况,从而在实际上解决了二次剩余的判别问题。然而,二次互反律只能提供二次剩余的存在性,对于二次同余方程的具体求解并没有实际帮助。 二次互反律常用勒让德符号表述:对于两个奇素数 p 和 q, 其中\left(\tfrac \right) 是勒让德符号。但是对于更一般的雅可比符号和希尔伯特符号也有对应的二次互反律。 欧拉和勒让德都曾经提出过二次互反律的猜想。但第一个严格的证明是由高斯在1796年作出的,随后他又发现了另外七个不同的证明。在《算数研究》一书和相关论文中,高斯将其称为“基石”: 此基石應當被視為此類型的定理中最為典雅的其中之一。(Art. 151) 私下里高斯把二次互反律誉为算术理论中的宝石,是一个黄金定律。 高斯之后雅可比、柯西、刘维尔、克罗内克、弗洛贝尼乌斯等也相继给出了新的证明。至今,二次互反律已有超过200个不同的的证明。二次互反律可以推广到更高次的情况,如三次互反律等等。.
二次互反律和卡爾·弗里德里希·高斯 · 二次互反律和卡爾·雅可比 ·
波恩哈德·黎曼
格奥尔格·弗雷德里希·波恩哈德·黎曼《世界人名翻譯大辭典》,2342頁,「Riemann, Berhard」條。 (德語:Georg Friedrich Bernhard Riemann,,)德国数学家,黎曼几何学创始人,复变函数论创始人之一。.
卡爾·弗里德里希·高斯和波恩哈德·黎曼 · 卡爾·雅可比和波恩哈德·黎曼 ·
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
数学家
数学家是指一群對數學有深入了解的的人士,將其知識運用於其工作上(特別是解決數學問題)。數學家專注於數、數據、邏輯、集合、結構、空間、變化。 專注於解決純數學(基础数学)領域以外的問題的數學家稱為應用數學家,他們運用他們的特殊數學知識與專業的方法解決許多在科學領域的顯著問題。因為專注於廣泛領域的問題、理論系統、定點結構。應用數學家經常研究與制定數學模型.
上面的列表回答下列问题
- 什么卡爾·弗里德里希·高斯和卡爾·雅可比的共同点。
- 什么是卡爾·弗里德里希·高斯和卡爾·雅可比之间的相似性
卡爾·弗里德里希·高斯和卡爾·雅可比之间的比较
卡爾·弗里德里希·高斯有85个关系,而卡爾·雅可比有31个。由于它们的共同之处4,杰卡德指数为3.45% = 4 / (85 + 31)。
参考
本文介绍卡爾·弗里德里希·高斯和卡爾·雅可比之间的关系。要访问该信息提取每篇文章,请访问: