博弈语义和指称语义
快捷方式: 差异,相似,杰卡德相似系数,参考。
博弈语义和指称语义之间的区别
博弈语义 vs. 指称语义
博弈语义是一种基于博弈论定义真或有效性等逻辑概念的形式语义,比如游戏者的赢策略。保尔·洛伦茨首先在1950年代晚期为逻辑引入了博弈语义。此后在逻辑中已经研究了很多不同的博弈语义。博弈语义也已经应用于编程语言的形式语义。. 在计算机科学中,指称语义(Denotational semantics)是通过构造表达其语义的(叫做指称(denotation)或意义的)数学对象来形式化计算机系统的语义的一种方法。编程语言的形式语义的其他方法包括公理语义和操作语义。指称语义方式最初开发来处理一个单一计算机程序定义的系统。后来领域扩展到了由多于一个程序构成的系统,比如网络和并发系统。 指称语义起源于 克里斯托弗·斯特雷奇 和 Dana Scott 在1960年代的工作。在 Strachey 和 Scott 最初开发的时候,指称语义把计算机程序的指称(意义)解释为映射输入到输出的函数。后来证明对于允许包含递归定义的函数和数据结构,这样的元素的程序的指称(意义)定义太受限制了。为了解决这个困难,Scott 介入了基于域的指称语义的一般性方法。后来的研究者介入了基于幂域的方法,来解决并发系统的语义的问题。 粗略的说,指称语义关注找到代表程序所做所为的数学对象。这种对象的搜集叫做域。例如,程序(或程序段)可以被偏函数,或演员事件图想定,或用环境和系统之间的博弈表示: 它们都是域的一般性例子。 指称语义的一个重要原则是“语义应当是复合性的”: 程序段的指称应当建立自它的子段的指称。最简单的例子是: “3 + 4”的意义确定自“3”、“4”和“+”的意义。 指称语义最初被开发为把函数式和顺序式程序建模为映射输入到输出的数学函数的框架。本文第一节描述在这个框架内开发的指称语义。后续章节处理多态、并发等问题。.
之间博弈语义和指称语义相似
博弈语义和指称语义有(在联盟百科)2共同点: 形式语义学,线性逻辑。
在计算理论中,形式语义学是关注计算的模式和程序设计语言的含义的严格的数学研究的领域。 语言的形式语义是用数学模型去表达该语言描述的可能的计算来给出的。 形式语义学(formal semantics),是程序设计理论的组成部分,以数学为工具,利用符号和公式,精确地定义和解释计算机程序设计语言的语义,使语义形式化的学科。 提供程序设计语言的形式语义的方法很多,其中主要类别有:.
博弈语义和形式语义学 · 形式语义学和指称语义 · 查看更多 »
在数理逻辑中,线性逻辑是拒绝“弱化”和“收缩”的结构规则的一种亚结构逻辑。对此解释是“假设是资源”:在证明中所有假设必须被消费“精确一次”。这区别于平常的逻辑比如经典逻辑或直觉逻辑,那里统治判断是“真理”,它可以按需要被自由的使用多次。例如,从命题A和A ⇒ B能按如下步骤得出结果A ∧ B.
博弈语义和线性逻辑 · 指称语义和线性逻辑 · 查看更多 »
上面的列表回答下列问题
- 什么博弈语义和指称语义的共同点。
- 什么是博弈语义和指称语义之间的相似性
博弈语义和指称语义之间的比较
博弈语义有11个关系,而指称语义有43个。由于它们的共同之处2,杰卡德指数为3.70% = 2 / (11 + 43)。
参考
本文介绍博弈语义和指称语义之间的关系。要访问该信息提取每篇文章,请访问: