之间勒让德符号和高斯引理相似
勒让德符号和高斯引理有(在联盟百科)3共同点: 二次互反律,二次剩余,施普林格科学+商业媒体。
二次互反律
在数论中,特别是在同余理论里,二次互反律(Law of Quadratic Reciprocity)是一个用于判别二次剩余,即二次同余方程x^2 \equiv p \pmod q 之整数解的存在性的定律。二次互反律揭示了方程x^2 \equiv p \pmod q 可解和 x^2 \equiv q \pmod p 可解的简单关系。运用二次互反律可以将模数较大的二次剩余判别问题转为模数较小的判别问题,并最后归结为较少的几个情况,从而在实际上解决了二次剩余的判别问题。然而,二次互反律只能提供二次剩余的存在性,对于二次同余方程的具体求解并没有实际帮助。 二次互反律常用勒让德符号表述:对于两个奇素数 p 和 q, 其中\left(\tfrac \right) 是勒让德符号。但是对于更一般的雅可比符号和希尔伯特符号也有对应的二次互反律。 欧拉和勒让德都曾经提出过二次互反律的猜想。但第一个严格的证明是由高斯在1796年作出的,随后他又发现了另外七个不同的证明。在《算数研究》一书和相关论文中,高斯将其称为“基石”: 此基石應當被視為此類型的定理中最為典雅的其中之一。(Art. 151) 私下里高斯把二次互反律誉为算术理论中的宝石,是一个黄金定律。 高斯之后雅可比、柯西、刘维尔、克罗内克、弗洛贝尼乌斯等也相继给出了新的证明。至今,二次互反律已有超过200个不同的的证明。二次互反律可以推广到更高次的情况,如三次互反律等等。.
二次剩余
在数论中,特别在同余理论裏,一个整数X对另一个整数p的二次剩餘(Quadratic residue)指X的平方X^2除以p得到的余数。 當存在某個X,式子X^2 \equiv d \pmod成立時,稱「d是模p的二次剩餘」 當对任意X,X^2 \equiv d \pmod不成立時,稱「d是模p的二次非剩餘」 研究二次剩余的理论称为二次剩余理论。二次剩余理论在实际上有广泛的应用,包括从噪音工程学到密码学以及大数分解。.
二次剩余和勒让德符号 · 二次剩余和高斯引理 ·
施普林格科学+商业媒体
施普林格科学+商业媒体(Springer Science+Business Media)或施普林格(Springer,),在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专--于科学、技术、数学以及医学领域。在科学、技术与医学领域中,施普林格是最大的书籍出版者,以及第二大世界性杂志出版者(最大的是爱思唯尔)。施普林格拥有超过60个出版社,每年出版1,900种杂志,5,500种新书,营业额为9.24亿欧元(2006年),雇有超过5,000名员工 。施普林格在柏林、海德堡、多德雷赫特(位于荷兰)与纽约设有主办事处。施普林格亚洲总部设在香港。2005年8月,施普林格在北京成立代表处。.
上面的列表回答下列问题
- 什么勒让德符号和高斯引理的共同点。
- 什么是勒让德符号和高斯引理之间的相似性
勒让德符号和高斯引理之间的比较
勒让德符号有16个关系,而高斯引理有19个。由于它们的共同之处3,杰卡德指数为8.57% = 3 / (16 + 19)。
参考
本文介绍勒让德符号和高斯引理之间的关系。要访问该信息提取每篇文章,请访问: