我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

加州大學柏克萊分校和有限元分析

快捷方式: 差异相似杰卡德相似系数参考

加州大學柏克萊分校和有限元分析之间的区别

加州大學柏克萊分校 vs. 有限元分析

#重定向 加利福尼亞大學柏克萊分校. 有限元分析,即有限元方法(冯康首次发现时称为基于变分原理的差分方法),是一种用于求解微分方程组或积分方程组数值解的数值技术。这一解法基于完全消除微分方程,即将微分方程转化为代数方程组(稳定情形);或将偏微分方程(组)改写为常微分方程(组)的逼近,这样可以用标准的数值技术(例如欧拉法,龙格-库塔法等)求解。 在解偏微分方程的过程中,主要的难点是如何构造一个方程来逼近原本研究的方程,并且该过程还需要保持数值稳定性。目前有许多处理的方法,他们各有利弊。当区域改变时(就像一个边界可变的固体),当需要的精确度在整个区域上变化,或者当解缺少光滑性时,有限元方法是在复杂区域(像汽车、船体结构、输油管道)上解偏微分方程的一个很好的选择。例如,在正面碰撞仿真时,有可能在"重要"区域(例如汽车的前部)增加预先设定的精确度并在车辆的末尾减少精度(如此可以减少仿真所需消耗);另一个例子是模拟地球的气候模式,预先设定陆地部分的精确度高于广阔海洋部分的精确度是非常重要的。.

之间加州大學柏克萊分校和有限元分析相似

加州大學柏克萊分校和有限元分析有(在联盟百科)0共同点。

上面的列表回答下列问题

加州大學柏克萊分校和有限元分析之间的比较

加州大學柏克萊分校具有1的关系,而有限元分析有31个。由于它们的共同之处0,杰卡德指数为0.00% = 0 / (1 + 31)。

参考

本文介绍加州大學柏克萊分校和有限元分析之间的关系。要访问该信息提取每篇文章,请访问: