我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

分裂域和有限域

快捷方式: 差异相似杰卡德相似系数参考

分裂域和有限域之间的区别

分裂域 vs. 有限域

在抽象代数中,一个系数域为\mathbb的多项式P(x)\,的分裂域(根域)是\mathbb的“最小”的一个扩域\mathbb,使得在其中P\,可以被分解为一次因式x-r_i\,的乘积,其中的r_i\,是\mathbb中元素。一个\mathbb上的多项式并不一定只有一个分裂域,但它所有的分裂域都是同构的:在同构意义上,\mathbb上的多项式的分裂域是唯一的。. 在数学中,有限域(finite field)或伽罗瓦域(Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 为素数时,整数对 取模。 有限域的元素个数称为它的序。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。.

之间分裂域和有限域相似

分裂域和有限域有(在联盟百科)3共同点: 域 (數學)可分扩张伽罗瓦扩张

域 (數學)

在抽象代数中,域(Field)是一种可進行加、減、乘和除(除了除以零之外,「零」即加法單位元素)運算的代數結構。域的概念是数域以及四则运算的推广。 域是环的一种。域和一般的环的区别在于域要求它的元素(除零元素之外)可以进行除法运算,这等价于说每个非零的元素都要有乘法逆元。體中的運算关于乘法是可交换的。若乘法運算沒有要求可交換則稱為除環(division ring)或skew field。.

分裂域和域 (數學) · 域 (數學)和有限域 · 查看更多 »

可分扩张

可分扩张是抽象代数之域扩张理论中的概念。如果一个代数扩张满足:任何一个中元素在基域上的极小多项式都是可分多项式,那么这个扩张就称作可分扩张。由于特征为0的域(包括常见的有理数域\mathbb)以及有限域都是完美域,任何这些域上的代数扩张都是可分扩张,因此可分扩张在域论研究中十分重要。可分扩张还是伽罗瓦扩张的条件之一,因此它在伽罗瓦理论中也扮演了重要的角色。.

分裂域和可分扩张 · 可分扩张和有限域 · 查看更多 »

伽罗瓦扩张

伽罗瓦扩张是抽象代数中伽罗瓦理论的核心概念之一。伽罗瓦扩张是域扩张的一类。如果某个域扩张既是可分扩张也是正规扩张,则称其为伽罗瓦扩张。另一个等价的定义是:伽罗瓦扩张是使得其上的环自同构群的固定域为其基域的域扩张。伽罗瓦扩张上的自同构群称为伽罗瓦群,而且伽罗瓦扩张的中间域与其伽罗瓦群的子群之间的关系满足伽罗瓦理论基本定理。.

伽罗瓦扩张和分裂域 · 伽罗瓦扩张和有限域 · 查看更多 »

上面的列表回答下列问题

分裂域和有限域之间的比较

分裂域有17个关系,而有限域有17个。由于它们的共同之处3,杰卡德指数为8.82% = 3 / (17 + 17)。

参考

本文介绍分裂域和有限域之间的关系。要访问该信息提取每篇文章,请访问: