徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

分子和硫酸根

快捷方式: 差异相似杰卡德相似系数参考

分子和硫酸根之间的区别

分子 vs. 硫酸根

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。. 硫酸根的化学式为SO42−,是硫酸二级电离出的负离子。.

之间分子和硫酸根相似

分子和硫酸根有(在联盟百科)7共同点: 共价键离子键电子键长X射线

共价键

共价键(Covalent Bond),是化学键的一种。两个或多个非金屬原子共同使用它们的外层电子(砷化鎵為例外),在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构叫做共价键。与离子键不同的是进入共价键的原子向外不显示电荷,因为它们并没有获得或损失电子。共价键的强度比氢键要强,比离子键小。 同一種元素的原子或不同元素的原子都可以通過共​​價鍵結合,一般共價鍵結合的產物是分子,在少數情況下也可以形成晶體。 吉爾伯特·路易斯于1916年最先提出共价键。 在简单的原子轨道模型中进入共价键的原子互相提供单一的电子形成电子对,这些电子对围绕进入共价键的原子而属它们共有。 在量子力学中,最早的共价键形成的解释是由电子的复合而构成完整的轨道来解释的。第一个量子力学的共价键模型是1927年提出的,当时人们还只能计算最简单的共价键:氢气分子的共价键。今天的计算表明,当原子相互之间的距离非常近时,它们的电子轨道会互相之间相互作用而形成整个分子共用的电子轨道。.

共价键和分子 · 共价键和硫酸根 · 查看更多 »

硫是一种化学元素,在元素周期表中它的化学符号是S,原子序数是16。硫是一种非常常见的无味无臭的非金属,纯的硫是黄色的晶体,又稱做硫黄、硫磺。硫有许多不同的化合价,常見的有-2, 0, +4, +6等。在自然界中常以硫化物或硫酸盐的形式出现,尤其在火山地区纯的硫也在自然界出现。硫单质难溶于水,微溶于乙醇,易溶于二硫化碳。对所有的生物来说,硫都是一种重要的必不可少的元素,它是多种氨基酸的组成部分,尤其是大多数蛋白质的组成部分。它主要被用在肥料中,也廣泛地被用在火药、潤滑劑、殺蟲劑和抗真菌剂中。.

分子和硫 · 硫和硫酸根 · 查看更多 »

离子键

离子键又被称为盐键,是化学键的一种,通过两个或多个原子或化学基团失去或获得电子而成为离子后形成。带相反电荷的原子或基团之间存在静电吸引力,两个带相反电荷的原子或基团靠近时,周围水分子被释放为自由水中,带负电和带正电的原子或基团之间产生的静电吸引力以形成离子键。 此类化学键往往在金属与非金属间形成。失去电子的往往是金属元素的原子,而获得电子的往往是非金属元素的原子。带有相反电荷的离子因电磁力而相互吸引,从而形成化学键。离子键较氢键强,其强度与共价键接近。 仅当总体的能级下降的时候,反应才会发生(由化学键联接的原子较自由原子有着较低的能级)。下降越多,形成的键越强。 现实中,原子间并不形成“纯”离子键。所有的键都或多或少带有共价键的成分。成键原子之间电平均程度越高,离子键成分越低。.

分子和离子键 · 硫酸根和离子键 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

分子和电子 · 电子和硫酸根 · 查看更多 »

键长

鍵长是两个成键原子A和B的平衡核间距离。它是了解分子结构的基本构型参数,也是了解化学键强弱和性质的参数。对于由相同的A和B两个原子组成的化学键:键长值小,键强;键的数目多,键长值小。在实际的分子中,由于受共轭效应、空间阻碍效应和相邻基团电负性的影响,同一种化学键键长还有一定差异。由大量的键长值可以推引出成键原子的原子半径;反之,利用原子半径的加和值可得这种化学键的典型键长。若再考虑两个原子电负性差异的大小予以适当校正,和实际测定制会符合得很好。各种分子中键长的数值,大量地已通过晶体的X射线衍射法予以测定;为数较少的简单的气态分子和X-H键长已通过光谱法和中子衍射法测出。.

分子和键长 · 硫酸根和键长 · 查看更多 »

X射线

--(X-ray),又被称为爱克斯射线、艾克斯射线、伦琴射线或--,是一种波长范围在0.01纳米到10纳米之间(对应频率范围30 PHz到30EHz)的电磁辐射形式。X射线最初用于医学成像诊断和X射线结晶学。X射线也是游離輻射等这一类对人体有危害的射线。 X射線波長範圍在較短處與伽馬射線較長處重疊。.

X射线和分子 · X射线和硫酸根 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

分子和氢 · 氢和硫酸根 · 查看更多 »

上面的列表回答下列问题

分子和硫酸根之间的比较

分子有106个关系,而硫酸根有41个。由于它们的共同之处7,杰卡德指数为4.76% = 7 / (106 + 41)。

参考

本文介绍分子和硫酸根之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »