公开密钥加密和群论
快捷方式: 差异,相似,杰卡德相似系数,参考。
公开密钥加密和群论之间的区别
公开密钥加密 vs. 群论
公开密钥加密(Public-key cryptography),也称为非对称加密(asymmetric cryptography),是密碼學的一種演算法,它需要兩個密钥,一個是公開密鑰,另一個是私有密鑰;一個用作加密的時候,另一個則用作解密。使用其中一個密钥把明文加密后所得的密文,只能用相對應的另一個密钥才能解密得到原本的明文;甚至連最初用來加密的密鑰也不能用作解密。由於加密和解密需要兩個不同的密鑰,故被稱為非對稱加密;不同於加密和解密都使用同一個密鑰的對稱加密。雖然兩個密鑰在数学上相关,但如果知道了其中一个,并不能憑此计算出另外一个;因此其中一个可以公开,称为公钥,任意向外發佈;不公开的密钥为私钥,必須由用戶自行嚴格秘密保管,絕不透過任何途徑向任何人提供,也不會透露給要通訊的另一方,即使他被信任。 基於公開密鑰加密的特性,它還提供數位簽章的功能,使電子文件可以得到如同在紙本文件上親筆簽署的效果。 公開金鑰基礎建設透過信任数字证书认证机构的根证书、及其使用公开密钥加密作數位簽章核發的公開金鑰認證,形成信任鏈架構,已在TLS實作並在万维网的HTTP以HTTPS、在电子邮件的SMTP以STARTTLS引入。 另一方面,信任網絡則採用去中心化的概念,取代了依賴數字證書認證機構的公鑰基礎設施,因為每一張電子證書在信任鏈中最終只由一個根證書授權信任,信任網絡的公鑰則可以累積多個用戶的信任。PGP就是其中一個例子。. 在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.
之间公开密钥加密和群论相似
公开密钥加密和群论有(在联盟百科)0共同点。
上面的列表回答下列问题
- 什么公开密钥加密和群论的共同点。
- 什么是公开密钥加密和群论之间的相似性
公开密钥加密和群论之间的比较
公开密钥加密有41个关系,而群论有54个。由于它们的共同之处0,杰卡德指数为0.00% = 0 / (41 + 54)。
参考
本文介绍公开密钥加密和群论之间的关系。要访问该信息提取每篇文章,请访问: