徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

光和全內反射

快捷方式: 差异相似杰卡德相似系数参考

光和全內反射之间的区别

光 vs. 全內反射

光通常指的是人類眼睛可以見的電磁波(可見光),視知覺就是對於可見光的知覺。可見光只是電磁波譜上的某一段頻譜,一般是定義為波長介於400至700奈(纳)米(nm)之間的電磁波,也就是波長比紫外線長,比紅外線短的電磁波。有些資料來源定義的可見光的波長範圍也有不同,較窄的有介於420至680nm,較寬的有介於380至800nm。 而有些非可見光也可以被稱為光,如紫外光、紅外光、x光。 光既是一种高频的电磁波,又是一種由称為光子的基本粒子組成的粒子流。因此光同时具有粒子性与波动性,或者说光具有“波粒二象性”。. 全內反射,又稱全反射(total reflection)是一種光學現象。當光線經過兩個不同折射率的介質時,部份的光線會於介質的界面被折射,其餘的則被反射。但是,當入射角比臨界角大時(光線遠離法線),光線會停止進入另一介面,反之會全部向內面反射。 這只會發生在當光線從光密介質(較高折射率的介質)進入到光疏介質(較低折射率的介質),入射角大於臨界角時。因為沒有折射(折射光線消失)而都是反射,故稱之為全內反射。例如當光線從玻璃進入空氣時會發生,但當光線從空氣進入玻璃則不會。最常見的是沸騰的水中氣泡顯得十分明亮,就是因爲發生了全內反射。 克普勒(Johannes Kepler,1571-1630)在西元1611年於他的著作Dioptrice中,已發表內部全反射(total internal reflection)的現象。.

之间光和全內反射相似

光和全內反射有(在联盟百科)8共同点: 偏振反射光学光導纖維量子力学折射折射率斯涅尔定律

偏振

偏振(polarization)指的是横波能夠朝著不同方向振盪的性質。例如電磁波、引力波都會展示出偏振現象。纵波则不會展示出偏振現象,例如傳播於氣體或液體的聲波,其只會朝著傳播方向振盪。如右圖所示,緊拉的細線可以展示出線偏振現象與圓偏振現象。 電磁波的電場與磁場彼此相互垂直。按照常規,電磁波的偏振方向指的是電場的偏振方向。在自由空間裏,電磁波是以橫波方式傳播,即電場與磁場又都垂直於電磁波的傳播方向。理論而言,只要垂直於傳播方向的方向,振盪的電場可以呈任意方向。假若電場的振盪只朝著單獨一個方向,則稱此為「線偏振」或「平面偏振」;假若電場的振盪方向是以電磁波的波頻率進行旋轉動作,並且電場向量的矢端隨著時間流意勾繪出圓型,則稱此為「圓偏振」;假若勾繪出橢圓型,則稱此為「橢圓偏振」;對於這兩個案例,又可按照在任意位置朝著源頭望去,電場隨時間流易而旋轉的順時針方向、逆時針方向,將圓偏振細分為「右旋圓偏振」、「左旋圓偏振」,將橢圓偏振細分為「右旋橢圓偏振」、「左旋橢圓偏振」;這性質稱為手徵性。 光波是一種電磁波。很多常見的光學物質都具有各向同性,例如玻璃。這些物質會維持波的偏振態不變,不會因偏振態的不同而展現出不同的物理行為。可是,有些重要的雙折射物質或光學活性物質具有各向異性。因此,偏振方向的不同,波的傳播狀況也不同,或者,波的偏振方向會被改變。起偏器是一種光學濾波器,只能讓朝著某特定方向偏振的光波通過,因此,可以將非偏振光變為偏振光。 在涉及到橫波傳播的科學領域,例如光學、地震學、無線電學、微波學等等,偏振是很重要的參數。激光、光纖通信、無線通信、雷達等等應用科技,都需要完善處理偏振問題。 極化的英文原文也是「polarization」,在英文文獻裏,偏振與極化兩個術語通用,都是使用同一個詞彙來表達,只有在中文文獻裏,才有不同的用法。一般來說,偏振指的是任何波動朝著某特定方向振盪的性質,而極化指的是各個帶電粒子因正負電荷在空間裡分離而產生的現象。.

偏振和光 · 偏振和全內反射 · 查看更多 »

反射

反射可以有以下含义:.

光和反射 · 全內反射和反射 · 查看更多 »

光学

光學(Optics),是物理學的分支,主要是研究光的現象、性質與應用,包括光與物質之間的相互作用、光學儀器的製作。光學通常研究紅外線、紫外線及可見光的物理行為。因為光是電磁波,其它形式的電磁輻射,例如X射線、微波、電磁輻射及無線電波等等也具有類似光的特性。英文術語「optics」源自古希臘字「ὀπτική」,意為名詞「看見」、「視見」。 大多數常見的光學現象都可以用古典電动力學理論來說明。但是,通常這全套理論很難實際應用,必需先假定簡單模型。幾何光學的模型最為容易使用。它試圖將光當作射線(光線),能夠直線移動,並且在遇到不同介質時會改變方向;它能夠解釋像直線傳播、反射、折射等等很多光線現象。物理光學的模型比較精密,它把光當作是傳播於介質的波動(光波)。除了反射、折射以外,它還能夠以波性質來解釋向前傳播、干涉、偏振等等光學現象。幾何光學不能解釋這些比較複雜的光學現象。在歷史上,光的射線模形首先被發展完善,然後才是光的波動模形.

光和光学 · 光学和全內反射 · 查看更多 »

光導纖維

光導纖維(Optical fiber),簡稱光纖,是一種由玻璃或塑料製成的纖維,利用光在這些纖維中以全反射原理傳輸的光傳導工具。微細的光纖封裝在塑料護套中,使得它能夠彎曲而不至於斷裂。通常光纖的一端的發射裝置使用發光二極體或一束激光將光脈衝傳送至光纖中,光纖的另一端的接收裝置使用光敏元件檢測脈衝。包含光纖的线缆称为光缆。由於信息在光導纖維的傳輸損失比電在電線傳導的損耗低得多,更因為主要生產原料是硅,蘊藏量極大,較易開採,所以價格很便宜,促使光纖被用作長距離的信息傳遞媒介。隨著光纖的價格進一步降低,光纖也被用於醫療和娛樂的用途。 光纖主要分為兩類,與。前者的折射率是漸變的,而後者的折射率是突變的。另外還分為單模光纖及多模光纖。近年來,又有新的光子晶體光纖問世。 光导纤维是双重构造,核心部分是高折射率玻璃,表层部分是低折射率的玻璃或塑料,光在核心部分傳輸,并在表层交界处不断进行全反射,沿“之”字形向前傳輸。这种纤维比头发稍粗,这样细的纤维要有折射率截然不同的双重结构分布,是一个非常惊人的技术。各国科学家经过多年努力,创造了内附着法、MCVD法、VAD法等等,制成了超高纯石英玻璃,特制成的光导纤维傳輸光的效率有了非常明显的提高。现在较好的光导纤维,其光傳輸損失每公里只有零点二分贝;也就是说传播一公里后只損4.5%。.

光和光導纖維 · 光導纖維和全內反射 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

光和量子力学 · 全內反射和量子力学 · 查看更多 »

折射

折射(法語,英語:Refraction,德語: Refraktion, 西班牙語: Refracción),一種常見的物理現象,指當物體或波動由一種媒介斜射入另一種媒介造成速度改變而引起角度上的偏移。「折射」一定等同於「光的折射」,所以雖然光線(一種橫波)會因為「折射」的不同令光的運行方向改變,但「折射」現象並不能用以證明光線是一種波動。最普遍的例子就是用手槍瞄準,當子彈穿過水时,其角度就會因為折射而偏移。 而所謂的「屈折」,也就是「光的折射」,專指光從一種介質進入另一種具有不同折射率之介質,或者在同一種介質中折射率不同的部分運行時,由於波速的差異,使光的運行方向改變的現象。例如當一條木棒插在水裡面時,單用肉眼看會以為木棒進入水中時折曲了,這是光進入水裡面時,產生折射,才帶來這種效果。.

光和折射 · 全內反射和折射 · 查看更多 »

折射率

某种介质的折射率  等于光在真空中的速度  跟光在介质中的相速度  之比: (nv.

光和折射率 · 全內反射和折射率 · 查看更多 »

斯涅尔定律

光波從一種介質傳播到另一種具有不同折射率的介質時,會發生折射現象,其入射角與折射角之間的關係,可以用斯涅尔定律(Snell's Law)來描述。斯涅尔定律是因荷兰物理学家威理博·斯涅尔而命名,又稱為「折射定律」。 在光學裏,光線跟蹤科技應用斯涅尔定律來計算入射角與折射角。在實驗光學與寶石學裏,這定律被應用來計算物質的折射率。對於具有負折射率的负折射率超材料(metamaterial),這定律也成立,允許光波因負折射角而朝後折射。 斯涅尔定律表明,當光波從介質1傳播到介质2時,假若兩種介質的折射率不同,則会发生折射現像,其入射光和折射光都處於同一平面,稱為「入射平面」,并且与界面法线的夹角满足如下关系: 其中,n_1、n_2分别是两種介质的折射率,\theta_1和\theta_2分别是入射光、折射光与界面法线的夹角,分别叫做「入射角」、「折射角」。 這公式稱為「斯涅尔公式」。 斯涅尔定律可以從費馬原理推導出來,也可以從惠更斯原理、平移對稱性或馬克士威方程組推導出來。.

光和斯涅尔定律 · 全內反射和斯涅尔定律 · 查看更多 »

上面的列表回答下列问题

光和全內反射之间的比较

光有101个关系,而全內反射有21个。由于它们的共同之处8,杰卡德指数为6.56% = 8 / (101 + 21)。

参考

本文介绍光和全內反射之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »