我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

傅里叶级数和安德雷·柯爾莫哥洛夫

快捷方式: 差异相似杰卡德相似系数参考

傅里叶级数和安德雷·柯爾莫哥洛夫之间的区别

傅里叶级数 vs. 安德雷·柯爾莫哥洛夫

在数学中,傅里叶级数(Fourier series, )是把类似波的函数表示成简单正弦波的方式。更正式地说,它能将任何周期函数或周期信号分解成一个(可能由无穷个元素组成的)简单振荡函数的集合,即正弦函数和余弦函数(或者,等价地使用复指数)。离散时间傅里叶变换是一个周期函数,通常用定义傅里叶级数的项进行定义。另一个应用的例子是Z变换,将傅里叶级数简化为特殊情形 |z|. 安德雷·尼古拉耶維奇·柯爾莫哥洛夫(俄语:Андре́й Никола́евич Колмого́ров,英语:Andrey Nikolaevich Kolmogorov,),俄国數學家,主要研究概率論、算法信息論、拓撲學、直觉主义逻辑、紊流、经典力学和計算複雜性理論,最為人所道的是對概率論公理化所作出的貢獻。他曾說:"概率論作為數學學科,可以而且應該從公理開始建設,和幾何、代數的路一樣"。.

之间傅里叶级数和安德雷·柯爾莫哥洛夫相似

傅里叶级数和安德雷·柯爾莫哥洛夫有(在联盟百科)2共同点: 概率论数学

概率论

概率论(Probability theory)是集中研究概率及随机现象的数学分支,是研究隨機性或不確定性等現象的數學。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及輪盤等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。 作为统计学的数学基础,概率论对诸多涉及大量数据定量分析的人类活动极为重要,概率论的方法同样适用于其他方面,例如是对只知道系统部分状态的复杂系统的描述——统计力学,而二十世纪物理学的重大发现是以量子力学所描述的原子尺度上物理现象的概率本质。 數學家和精算師認為概率是在0至1閉區間内的數字,指定給一發生與失敗是隨機的「事件」。概率P(A)根據概率公理來指定給事件A。 一事件A在一事件B確定發生後會發生的概率稱為B給之A的條件概率;其數值為。若B給之A的條件概率和A的概率相同時,則稱A和B為獨立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「當A和B為獨立事件時,P(A \cap B).

傅里叶级数和概率论 · 安德雷·柯爾莫哥洛夫和概率论 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

傅里叶级数和数学 · 安德雷·柯爾莫哥洛夫和数学 · 查看更多 »

上面的列表回答下列问题

傅里叶级数和安德雷·柯爾莫哥洛夫之间的比较

傅里叶级数有51个关系,而安德雷·柯爾莫哥洛夫有30个。由于它们的共同之处2,杰卡德指数为2.47% = 2 / (51 + 30)。

参考

本文介绍傅里叶级数和安德雷·柯爾莫哥洛夫之间的关系。要访问该信息提取每篇文章,请访问: