我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

偏度和累积分布函数

快捷方式: 差异相似杰卡德相似系数参考

偏度和累积分布函数之间的区别

偏度 vs. 累积分布函数

在機率論和統計學中,偏度衡量實數隨機變量概率分布的不對稱性。偏度的值可以為正,可以為負或者甚至是無法定義。在數量上,偏度為負(負偏態)就意味着在概率密度函數左側的尾部比右側的長,絕大多數的值(包括中位數在內)位於平均值的右側。偏度為正(正偏態)就意味着在概率密度函數右側的尾部比左側的長,絕大多數的值(但不一定包括中位數)位於平均值的左側。偏度為零就表示數值相對均勻地分布在平均值的兩側,但不一定意味着其為對稱分布。. 累积分布函数,又叫分布函数,是概率密度函數的积分,能完整描述一個實随机变量X的概率分佈。一般以大寫“CDF”(Cumulative Distribution Function)标记。 對於所有實數x ,累积分布函数定義如下:.

之间偏度和累积分布函数相似

偏度和累积分布函数有(在联盟百科)2共同点: 实数随机变量

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

偏度和实数 · 实数和累积分布函数 · 查看更多 »

随机变量

給定樣本空间(S, \mathbb),如果其上的實值函數 X:S \to \mathbb是\mathbb (實值)可測函數,则稱X為(實值)随机变量。初等概率論中通常不涉及到可測性的概念,而直接把任何X:S \to \mathbb的函數稱為随机变量。 如果X指定给概率空间S中每一个事件e有一个实数X(e),同时针对每一个实数r都有一个事件集合A_r与其相对应,其中A_r.

偏度和随机变量 · 累积分布函数和随机变量 · 查看更多 »

上面的列表回答下列问题

偏度和累积分布函数之间的比较

偏度有14个关系,而累积分布函数有4个。由于它们的共同之处2,杰卡德指数为11.11% = 2 / (14 + 4)。

参考

本文介绍偏度和累积分布函数之间的关系。要访问该信息提取每篇文章,请访问: