徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

信息论和科学大纲

快捷方式: 差异相似杰卡德相似系数参考

信息论和科学大纲之间的区别

信息论 vs. 科学大纲

信息论(information theory)是应用数学、電機工程學和计算机科学的一个分支,涉及信息的量化、存储和通信等。信息论是由克劳德·香农发展,用来找出信号处理与通信操作的基本限制,如数据压缩、可靠的存储和数据传输等。自创立以来,它已拓展应用到许多其他领域,包括统计推断、自然语言处理、密码学、神经生物学、进化论和分子编码的功能、生态学的模式选择、热物理、量子计算、语言学、剽窃检测、模式识别、异常检测和其他形式的数据分析。 熵是信息的一个关键度量,通常用一条消息中需要存储或传输一个的平均比特数来表示。熵衡量了预测随机变量的值时涉及到的不确定度的量。例如,指定擲硬幣的结果(两个等可能的结果)比指定掷骰子的结果(六个等可能的结果)所提供的信息量更少(熵更少)。 信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信道编码定理、信源-信道隔离定理相互联系。 信息论的基本内容的应用包括无损数据压缩(如ZIP文件)、有损数据压缩(如MP3和JPEG)、信道编码(如DSL))。这个领域处在数学、统计学、计算机科学、物理学、神经科学和電機工程學的交叉点上。信息论对航海家深空探测任务的成败、光盘的发明、手机的可行性、互联网的发展、语言学和人类感知的研究、对黑洞的了解,以及许多其他领域都影响深远。信息论的重要子领域有信源编码、信道编码、算法复杂性理论、算法信息论、資訊理論安全性和信息度量等。. 以下大綱是科學的主題概述: 科学(Science,Επιστήμη)是通過經驗實證的方法,對現象(原來指自然現象,現泛指包括社會現象等現象)進行歸因的学科。科学活动所得的知识是条件明确的(不能模棱两可或随意解读)、能经得起检验的,而且不能与任何适用范围内的已知事实产生矛盾。科学原仅指对自然现象之规律的探索与总结,但人文学科也被越来越多地冠以“科学”之名。 人们习惯根据研究对象的不同把科学划分为不同的类别,传统的自然科学主要有生物學、物理學、化學、地球科學和天文學。逻辑学和数学的地位比较特殊,它们是其它一切科学的论证基础和工具。 科学在认识自然的不同层面上设法解决各种具体的问题,强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对自然界的认识偏差的纠正史。因此“科学”本身要求对理论要保持一定的怀疑性,因此它绝不是“正确”的同义词。.

之间信息论和科学大纲相似

信息论和科学大纲有(在联盟百科)18共同点: 密码学信息学神经科学统计学生态学物理学计算机科学语言学黑洞量子计算自然语言处理英语電機工程學通信模式识别数学数据分析

密码学

密碼學(Cryptography)可分为古典密码学和现代密码学。在西欧語文中,密码学一词源於希臘語kryptós“隱藏的”,和gráphein“書寫”。古典密码学主要关注信息的保密书写和传递,以及与其相对应的破译方法。而现代密码学不只关注信息保密问题,还同时涉及信息完整性验证(消息验证码)、信息发布的不可抵赖性(数字签名)、以及在分布式计算中产生的来源于内部和外部的攻击的所有信息安全问题。古典密码学与现代密码学的重要区别在于,古典密码学的编码和破译通常依赖于设计者和敌手的创造力与技巧,作为一种实用性艺术存在,并没有对于密码学原件的清晰定义。而现代密码学则起源于20世纪末出现的大量相关理论,这些理论使得现代密码学成为了一种可以系统而严格地学习的科学。 密码学是数学和计算机科学的分支,同时其原理大量涉及信息论。著名的密碼學者罗纳德·李维斯特解釋道:「密碼學是關於如何在敵人存在的環境中通訊」,自工程學的角度,這相當于密碼學與純數學的差异。密碼學的发展促進了计算机科学,特別是在於電腦與網路安全所使用的技術,如存取控制與資訊的機密性。密碼學已被應用在日常生活:包括自动柜员机的晶片卡、電腦使用者存取密碼、電子商務等等。.

信息论和密码学 · 密码学和科学大纲 · 查看更多 »

信息学

信息学,旧称情报学(外來語),主要是指以信息为研究对象,利用计算机及其程序设计等技术为研究工具来分析问题、解决问题的学问,是以扩展人类的信息功能为主要目标的一门综合性学科。.

信息学和信息论 · 信息学和科学大纲 · 查看更多 »

神经科学

經科學(neuroscience),又稱神經生物學,是專門研究神經系統的結構、功能、发育、演化、遗传学、生物化學、生理學、藥理學及病理學的一门科学。對行為及學習的研究都是神經科學的分支。 對人腦研究是個跨領域的範疇,當中涉及分子層面、細胞層面、神經小組、大型神經系統,如視覺神經系統、腦幹、腦皮層。 最高層次的研究就是結合認知科學成為認知神經科學,其專家被稱為認知心理學家。一些研究人員相信認知神經科學提供對思維及知覺的全面了解,甚至可以代替心理學。 神经科学致力于科学地研究神经系统。尽管神经科学学会成立于1969年,但是对于大脑的研究很早就已经开始。传统的神经科学是生物科学的一个分支。其研究范围包括对神经系统的结构,功能,进化史,发育,遗传,生理学,药理学和病理学研究,近年来神经科学的研究深度有了突破性成長,开始与其他学科有了越来越多的交叉与融合,如认知和神经心理学,精神疾病學,计算机科学,生物信息学,计算神经生物学,统计学,物理学,生物化学,犯罪學,医学科学和哲学陸續加入研究行列。 暫時最關心的課題是: .

信息论和神经科学 · 神经科学和科学大纲 · 查看更多 »

统计学

统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.

信息论和统计学 · 科学大纲和统计学 · 查看更多 »

生态学

德國生物學家恩斯特·海克爾(左)和丹麦植物学家尤金纽斯·瓦尔明(右),两位生態学的建立者 生态学(Ökologie),是德国生物学家恩斯特·海克尔于1866年定义的一个概念:生态学是研究生物体与其周围环境(包括非生物环境和生物环境)相互关系的科学。德语Ökologie(最初:Oecologie)是由希腊语词汇Οικοθ(家)和Λογοθ(学科)组成的,意思是“研究居住在同一自然环境中的动物(Lebewesen)的学科”,目前已经发展为“研究生物与其环境之间的相互关系的科学”。环境包括生物环境和非生物环境,生物环境是指生物物种之间和物种内部各个体之间的关系,非生物环境包括自然环境:土壤、岩石、水、空气、温度、湿度等。 在1935年英国的Tansley提出了生态系统的概念之后,美国的年轻学者Lindeman在对Mondota湖生态系统详细考察之后提出了生态金字塔能量转换的“十分之一定律”,也就是同一條食物鏈上各營養級之間能量的轉化效率平均大約為百分之十左右。由此,生态学成为一门有自己的研究对象、任务和方法的比较完整和独立的学科。近年来,生态学已经创立了自己独立研究的理论主体,即从生物个体与环境直接影响的小环境到生态系统不同层级的有机体与环境关系的理论。它们的研究方法经过描述——实验——物质定量三个过程。系统论、控制论、信息论的概念和方法的引入,促进了生态学理论的发展。如今,由于与人类生存与发展的紧密相关而产生了多个生态学的研究热点,如生物多样性的研究、全球气候变化的研究、受损生态系统的恢复与重建研究、可持续发展研究等。 生态学是生物学的一个分支,生物学的研究对象向微观和宏观两个方面发展,微观方面向分子生物学方向发展,生态学是向研究宏观方向发展的分支,是以生物个体、种群、群落、生态系统直到整个生物圈作为它的研究对象。生态学也是一个综合性的学科,需要利用地质学、地理学、气象学、土壤学、化学、物理学等各方面的研究方法和知识,是将生物群落和其生活的环境作为一个互相之间不断地进行物质循环和能量流动的整体来进行研究。.

信息论和生态学 · 生态学和科学大纲 · 查看更多 »

化學及热力学中所谓熵(entropy),是一種測量在動力學方面不能做功的能量總數,也就是當總體的熵增加,其做功能力也下降,熵的量度正是能量退化的指標。熵亦被用於計算一個系統中的失序現象,也就是計算該系統混亂的程度。熵是一个描述系统状态的函数,但是经常用熵的参考值和变化量进行分析比较,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。.

信息论和熵 · 熵和科学大纲 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

信息论和物理学 · 物理学和科学大纲 · 查看更多 »

计算机科学

计算机科学用于解决信息与计算的理论基础,以及实现和应用它们的实用技术。 计算机科学(computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探討计算问题的性质,比如计算复杂性理论;还有一些领域專注于怎样实现计算,比如程式語言理論是研究描述计算的方法,而程式设计是应用特定的程式語言解决特定的计算问题,人机交互则是專注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。 有时公众会误以为计算机科学就是解决计算机问题的事业(比如信息技术),或者只是与使用计算机的经验有关,如玩游戏、上网或者文字处理。其实计算机科学所关注的,不仅仅是去理解实现类似游戏、浏览器这些软件的程序的性质,更要通过现有的知识创造新的程序或者改进已有的程序。 尽管计算机科学(computer science)的名字里包含计算机这几个字,但实际上计算机科学相当数量的领域都不涉及计算机本身的研究。因此,一些新的名字被提议出来。某些重点大学的院系倾向于术语计算科学(computing science),以精确强调两者之间的不同。丹麦科学家Peter Naur建议使用术语"datalogy",以反映这一事实,即科学学科是围绕着数据和数据处理,而不一定要涉及计算机。第一个使用这个术语的科学机构是哥本哈根大学Datalogy学院,该学院成立于1969年,Peter Naur便是第一任教授。这个术语主要被用于北欧国家。同时,在计算技术发展初期,《ACM通讯》建议了一些针对计算领域从业人员的术语:turingineer,turologist,flow-charts-man,applied meta-mathematician及applied epistemologist。 三个月后在同样的期刊上,comptologist被提出,第二年又变成了hypologist。 术语computics也曾经被提议过。在欧洲大陆,起源于信息(information)和数学或者自动(automatic)的名字比起源于计算机或者计算(computation)更常见,如informatique(法语),Informatik(德语),informatika(斯拉夫语族)。 著名计算机科学家Edsger Dijkstra曾经指出:“计算机科学并不只是关于计算机,就像天文学并不只是关于望远镜一样。”("Computer science is no more about computers than astronomy is about telescopes.")设计、部署计算机和计算机系统通常被认为是非计算机科学学科的领域。例如,研究计算机硬件被看作是计算机工程的一部分,而对于商业计算机系统的研究和部署被称为信息技术或者信息系统。然而,现如今也越来越多地融合了各类计算机相关学科的思想。计算机科学研究也经常与其它学科交叉,比如心理学,认知科学,语言学,数学,物理学,统计学和经济学。 计算机科学被认为比其它科学学科与数学的联系更加密切,一些观察者说计算就是一门数学科学。 早期计算机科学受数学研究成果的影响很大,如Kurt Gödel和Alan Turing,这两个领域在某些学科,例如数理逻辑、范畴论、域理论和代数,也不断有有益的思想交流。.

信息论和计算机科学 · 科学大纲和计算机科学 · 查看更多 »

语言学

语言学(linguistics)是一门关于人类语言的科学研究。语言学包含了几种分支领域。在语言结构(语法)研究与意义(语义与语用)研究之间存在一个重要的主题划分。语法中包含了词法(单词的形成与组成),句法(决定单词如何组成短语或句子的规则)以及语音(声音系统与抽象声音单元的研究)。语音学是语言学的一个相关分支,它涉及到语音(phone)与非语音声音的实际属性,以及它们是如何发出与被接收到的。 與学习語言不同,语言学是研究所有人类语文發展有關的一門學術科目(通常只有根据语言,非文字)。传统上,语言学是文化人类学的分支学科,但是现在语言学越来越独立了。语言学研究句法和词语等语言的描述,也研究语言的发展史。 语言学其他的附属科目包括以下:.

信息论和语言学 · 科学大纲和语言学 · 查看更多 »

黑洞

黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.

信息论和黑洞 · 科学大纲和黑洞 · 查看更多 »

量子计算

#重定向 量子计算机.

信息论和量子计算 · 科学大纲和量子计算 · 查看更多 »

自然语言处理

自然語言處理(natural language processing,缩写作 NLP)是人工智慧和語言學領域的分支學科。此領域探討如何處理及運用自然語言;自然語言認知則是指讓電腦「懂」人類的語言。 自然語言生成系統把計算機數據轉化為自然語言。自然語言理解系統把自然語言轉化為計算機程序更易于處理的形式。.

信息论和自然语言处理 · 科学大纲和自然语言处理 · 查看更多 »

英语

英语(English,)是一种西日耳曼语言,诞生于中世纪早期的英格兰,如今具有全球通用语的地位。“英语”一词源于迁居英格兰的日耳曼部落盎格鲁(Angles),而“盎格鲁”得名于临波罗的海的半岛盎格里亚(Anglia)。弗里西语是与英语最相近的语言。英语词汇在中世纪早期受到了其他日耳曼族语言的大量影响,后来受罗曼族语言尤其是法语的影响。英语是将近六十个国家唯一的官方语言或官方语言之一,也是全世界最多國家的官方語言。它是英国、美国、加拿大、澳大利亚、爱尔兰和新西兰最常用的语言,也在加勒比、非洲及南亚的部分地区被广泛使用。它是世界上母语人口第三多的语言,仅次于汉语和西班牙语。英语是学习者最多的第二外语跟學習者最多的第一外語,是联合国、欧盟和许多其他国际组织的官方语言。它是使用最广泛的日耳曼族语言,至少70%的日耳曼语族使用者说英语。 英语有1400多年的发展史。公元5世纪,盎格魯-撒克遜人把他们的各种盎格鲁-弗里西语方言带到了大不列顛島,它们被称为古英语。中古英语始于11世纪后期的诺曼征服,这一时期英语受到了法语的影响。15世纪末伦敦对印刷机的采用、《钦定版圣经》的出版及元音大推移标志了近代英语的开端。通过大英帝国对全球的影响,现代英语在17世纪至20世纪中叶传播到了世界各地。通过各种印刷和电子媒体,随着美国取得全球超级大国地位,英语已经成为了国际对话中居领导地位的世界語言。它还是许多地区和行业(如科学、导航、法律等)的通用语。 现代英语和很多其他语言相比屈折变化较少,更多地依靠助動詞和语序来表达复杂的时态、体和语气,以及被動語態、疑问和一些否定。英语的各种口音和方言在发音和音位方面有显著差异,有时它们的词汇、语法和拼法也有所不同,但世界各地说英语的人能基本无碍地沟通交流。.

信息论和英语 · 科学大纲和英语 · 查看更多 »

電機工程學

電機工程學是以電子學、電磁學等物理学分支为基础,涵盖電子學、電子計算機、電力工程、电信、控制工程、訊號處理等子领域的一門工程學。十九世紀後半期以來,隨著電報、電話、電能在供應與使用方面的商業化,該學科逐漸發展為相對獨立的專業領域。 電機工程廣義上涵蓋該領域的分支,但在有些地方,「電機工程學」(Electrical Engineering)一詞的意義有時不包括「電子工程學」(Electronic Engineering)。 這個情況下,「電機工程學」是指涉及到大能量的電力系統(如電能傳輸、重型電機機械及電動機),而「電子工程」則是指處理小信號的電子系統(如計算機和積體電路)。 另一種區分法為,電力工程師著重於電能的傳輸,而電子工程師則著重於利用電子訊號進行資訊的傳輸。這些子領域的範圍有時也會重疊:例如,電力電子學使用電力電子元件對電能進行變換和控制;又如,智慧電網偵測電能供應者的電能供應狀況與一般家庭使用者的電能使用狀況,并据之調整家電用品的耗電量,以此达到节约能源、降低损耗、增强輸電網路可靠性的目的。因此,電機工程亦函蓋電子工程部分領域的專業知識。.

信息论和電機工程學 · 科学大纲和電機工程學 · 查看更多 »

通信

通信是發送者通过某種媒體以某種格式來傳遞信息到收信者以達致某個目的。在古代,人們通過驛站、飛鴿傳書、烽火報警、符號、語言、眼神、觸碰等方式進行信息傳遞。到了今天,隨著科技水平的飛速發展,通訊基本完全利用有線或無線電完成,相繼出現了有線電話、固定電話、無線電話、手機、網際網路甚至視訊電話等各種通訊方式。通訊技術拉近了人與人之間的距離,提高了通訊的效率,深刻的改變了人類的通訊。交流也是一種方法讓其他人理解你。.

信息论和通信 · 科学大纲和通信 · 查看更多 »

模式识别

模式识别(Pattern recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。我们把环境与客体统称为“模式”。随着计算机技术的发展,人类有可能研究复杂的信息处理过程。信息处理过程的一个重要形式是生命体对环境及客体的识别。对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。这是模式识别的两个重要方面。市场上可见到的代表性产品有光学字符识别、语音识别系统。 计算机识别的显著特点是速度快、准确性高、效率高,在将来完全可以取代人工录入。 识别过程与人类的学习过程相似。以光學字元識別之“汉字识别”为例:首先将汉字图像进行处理,抽取主要表达特征并将特征与汉字的代码存在计算机中。就像老师教我们「这个字叫什么、如何写」记在大脑中。这一过程叫做“训练”。识别过程就是将输入的汉字图像经处理后与计算机中的所有字进行比较,找出最相近的字就是识别结果。这一过程叫做“匹配”。.

信息论和模式识别 · 模式识别和科学大纲 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

信息论和数学 · 数学和科学大纲 · 查看更多 »

数据分析

資料分析是一类统计方法,其主要特点是多维性和描述性。有些几何方法有助于揭示不同的数据之间存在的关系,并绘制出统计信息图,以更简洁的解释这些数据中包含的主要信息。其他一些用于收集数据,以便弄清哪些是同质的,从而更好地了解数据。 資料分析可以处理大量数据,并确定这些数据最有用的部分。本学科近年来的成功,很大程度上是因为制图技术的提高。这些图可以通过直接分析数据,来突出难以捕捉的关系;更重要的是,这些表达方法与基于现象分布的“先验”观念无关,与经典统计方法正相反。 資料分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得資料分析得以推广。資料分析是数学与计算机科学相结合的产物。 若是以固定时间为資料分析的颗粒单位,则称为时间序列分析,是主要作为销售数据商业分析的方法之一。 Category:数据分析 Category:科學方法.

信息论和数据分析 · 数据分析和科学大纲 · 查看更多 »

上面的列表回答下列问题

信息论和科学大纲之间的比较

信息论有62个关系,而科学大纲有948个。由于它们的共同之处18,杰卡德指数为1.78% = 18 / (62 + 948)。

参考

本文介绍信息论和科学大纲之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »