徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

低温物理学和玻色–爱因斯坦凝聚

快捷方式: 差异相似杰卡德相似系数参考

低温物理学和玻色–爱因斯坦凝聚之间的区别

低温物理学 vs. 玻色–爱因斯坦凝聚

低溫物理學 (Cryogenics),又稱低溫學,是物理學的分支,主要研究物質在低溫狀況下的物理性質的科學,有時也包括低溫下獲得的生成物和它的測量技術。而低溫物理學中的低溫定義為−150 °C(−238 °F,即123K)以下的溫度。 19世紀,英國物理學家法拉第在一次實驗中偶然液化了氯氣,由此,他認為一切氣體在低溫高壓的情況下都可以被液化。到了19世紀40年代,法拉第本人已經成功液化了當時大多數已知的氣體,只有氧氣、氮氣、氫氣、一氧化碳、二氧化氮、甲烷六種氣體無法液化,而且創出當時的最低溫度( -110 °C, 163K)。隨後,低溫設備不斷被完善,逐級降溫和定壓氣體膨脹方法開始廣泛應用。1898年英國物理學家杜瓦成功液化了氫氣,標誌著這六種氣體都夠能被液化。1895年,英國化學家從礦石中分離出更難液化的氣體——氦氣。直至1908年,才成功被荷蘭萊頓大學的物理學家海克·卡末林·昂內斯將其液化,同時令低溫記錄創下新低( -269 °C, 4K)。之後,昂內斯獲得1913年的諾貝爾物理學獎。 1911年,昂內斯意外發現以( -268.8 °C, 4.2K)的液氦冷卻汞時,電阻突然驟降到接近零歐姆(0Ω),此現象即為超導現象。隨後,他又發現在低溫下鉛、錫也和汞一樣具有相似的超導特性。超導效應的發展前景可觀,如果能使超導材料在室溫下應用,將能大大提高輸電的效能,延長材料使用的壽命,降低熱損耗。近年,物理學家正不斷尋找超導轉變溫度(Tc)更高的超導材料。目前,高溫超導體已經成為凝聚態物理學中最熱門的研究領域。. 玻色–爱因斯坦凝聚(Bose–Einstein condensate)是玻色子原子在冷却到接近绝对零度所呈现出的一种气态的、超流性的物质状态(物态)。1995年,麻省理工學院的沃夫岡·凱特利與科罗拉多大学鲍尔德分校的埃里克·康奈尔和卡尔·威曼使用气态的铷原子在170 nK(1.7 K)的低温下首次获得了玻色-爱因斯坦--。在这种状态下,几乎全部原子都聚集到能量最低的量子态,形成一个宏观的量子状态。.

之间低温物理学和玻色–爱因斯坦凝聚相似

低温物理学和玻色–爱因斯坦凝聚有(在联盟百科)0共同点。

上面的列表回答下列问题

低温物理学和玻色–爱因斯坦凝聚之间的比较

低温物理学有41个关系,而玻色–爱因斯坦凝聚有38个。由于它们的共同之处0,杰卡德指数为0.00% = 0 / (41 + 38)。

参考

本文介绍低温物理学和玻色–爱因斯坦凝聚之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »