我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

二项式定理和杨辉

快捷方式: 差异相似杰卡德相似系数参考

二项式定理和杨辉之间的区别

二项式定理 vs. 杨辉

在初等代數中,二项式定理(Binomial theorem)描述了二项式的幂的代数展开。根据该定理,可以将两个数之和的整数次幂诸如(x + y)n 展开为类似 axbyc 项之和的恒等式,其中b、c均为非负整数且。系数a是依赖于 n 和b的正整数。当某项的指数为0时,通常略去不写。例如: (x+y)^4 \;. 杨辉(約1238年-約1298年),字謙光,錢塘(今浙江杭州)人,是中國南宋時期数学家。楊輝生於約宋理宗嘉熙二年(1238年),終於約元成宗大德二年(1298年)。他著有《詳解九章算法》12卷、《日用算法》192卷、《乘除通變算寶》3卷、《田畝比類乘除捷法》2卷、《續古摘奇算法》2卷及《九章算法篡類》、《杨辉算法》等多本算法的著作。另一方面,他在宋度宗咸淳年间的兩本著作裡,亦有提及當時南宋的土地價格。這些資料亦對後世史學家瞭解南宋經濟發展有很重要的幫助。 楊輝在著作中收錄了不少現已失傳的、古代各類數學著作中很有價值的算題和算法,保存了許多十分寶貴的宋代數學史料。他對任意高次冪的開方計算、二項展開式、高次方程的求解、高階等差級數、縱橫圖等問題,都有精到的研究。楊輝十分留心數學教育,並在自己的實踐中貫徹其教育思想。楊輝更對於垛積問題(高階等差級數)及幻方、幻圆作過詳細的研究。 由於他在他的著作裡提及過賈憲對二項展開式的研究,所以“賈憲三角”又名“楊輝三角”。這比歐洲於17世紀的同類型的研究“帕斯卡三角形”早了差不多五百年。在《乘除通變算寶》中,楊輝創立了“九歸”口訣,介紹了籌算乘除的各種速算法等等。這些在中國數學史上,都佔有重要的地位。 在《續古摘奇算法》中,楊輝列出了各式各樣的縱橫圖(幻方),它是宋代研究幻方和幻圆的最重要的著述。楊輝對中國古代的幻方,不僅有深刻的研究,而且還創造了一个名为攒九图的四阶同心幻圆和多个连环幻圆。.

之间二项式定理和杨辉相似

二项式定理和杨辉有1共同点(的联盟百科): 杨辉三角形

杨辉三角形

杨辉三角形,又称賈憲三角形、帕斯卡三角形、海亚姆三角形、巴斯卡三角形,是二项式係數在的一种写法,形似三角形,在中国首现于南宋杨辉的《详解九章算术》得名,书中杨辉说明是引自贾宪的《释锁算术》,故又名贾宪三角形。前 9 行写出来如下:         1        1 1       1 2 1      1 3 3 1     1 4 6 4 1    1 5 10 10 5 1   1 6 15 20 15 6 1  1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 杨辉三角形第 n 层(顶层称第 0 层,第 1 行,第 n 层即第 n+1 行,此处 n 为包含 0 在内的自然数)正好对应于二项式 \left(a+b\right)^ 展开的系数。例如第二层 1 2 1 是幂指数为 2 的二项式 \left(a+b\right)^ 展开形式 a^+2ab+b^ 的系数。.

二项式定理和杨辉三角形 · 杨辉和杨辉三角形 · 查看更多 »

上面的列表回答下列问题

二项式定理和杨辉之间的比较

二项式定理有30个关系,而杨辉有20个。由于它们的共同之处1,杰卡德指数为2.00% = 1 / (30 + 20)。

参考

本文介绍二项式定理和杨辉之间的关系。要访问该信息提取每篇文章,请访问: