我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

二项式定理和帕斯卡法則

快捷方式: 差异相似杰卡德相似系数参考

二项式定理和帕斯卡法則之间的区别

二项式定理 vs. 帕斯卡法則

在初等代數中,二项式定理(Binomial theorem)描述了二项式的幂的代数展开。根据该定理,可以将两个数之和的整数次幂诸如(x + y)n 展开为类似 axbyc 项之和的恒等式,其中b、c均为非负整数且。系数a是依赖于 n 和b的正整数。当某项的指数为0时,通常略去不写。例如: (x+y)^4 \;. 帕斯卡法則是組合數學上的一個關於二項式係數的恆等式。它說明對於正整數n,k(k \le n),.

之间二项式定理和帕斯卡法則相似

二项式定理和帕斯卡法則有(在联盟百科)2共同点: 二項式係數杨辉三角形

二項式係數

二項式係數在數學上是二項式定理中的係數族。其必然為正整數,且能以兩個非負整數為參數確定,此兩參數通常以n和k代表,並將二項式係數寫作\tbinom nk ,亦即是二項式冪(1 + x) n的多項式展式中,x k項的係數。如將二項式係數的n值順序排列成行,每行為k值由0至n列出,則構成帕斯卡三角形。 此數族亦常見於其他代數學領域中,尤其是組合數學。任何有n個元素的集合,由其衍生出擁有k個元素的子集,即由其中任意k個元素的組合,共有\tbinom nk個。故此\tbinom nk亦常讀作「n選取k」。二項式係數的特性使表達式\tbinom nk的定義不再局限於n和k均為非負整數及,然此等表達式仍被稱為二項式係數。 雖然此數族早已被發現(見帕斯卡三角形),但表達式\tbinom nk則是由安德烈亚斯·冯·厄廷格豪森於1826年始用。最早探討二項式係數的論述是十世紀的Halayudha寫的印度教典籍《Pingala的計量聖典》(chandaḥśāstra),及至約1150年,印度數學家Bhaskaracharya於其著作《Lilavati》Lilavati 第6節,第4章(見)。 中給出一個簡單的描述。 二項式係數亦有不同的符號表達方式,包括:C(n, k)、nCk、nCk、C^_,其中的C代表組合(combinations)或選擇(choices)。.

二項式係數和二项式定理 · 二項式係數和帕斯卡法則 · 查看更多 »

杨辉三角形

杨辉三角形,又称賈憲三角形、帕斯卡三角形、海亚姆三角形、巴斯卡三角形,是二项式係數在的一种写法,形似三角形,在中国首现于南宋杨辉的《详解九章算术》得名,书中杨辉说明是引自贾宪的《释锁算术》,故又名贾宪三角形。前 9 行写出来如下:         1        1 1       1 2 1      1 3 3 1     1 4 6 4 1    1 5 10 10 5 1   1 6 15 20 15 6 1  1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 杨辉三角形第 n 层(顶层称第 0 层,第 1 行,第 n 层即第 n+1 行,此处 n 为包含 0 在内的自然数)正好对应于二项式 \left(a+b\right)^ 展开的系数。例如第二层 1 2 1 是幂指数为 2 的二项式 \left(a+b\right)^ 展开形式 a^+2ab+b^ 的系数。.

二项式定理和杨辉三角形 · 帕斯卡法則和杨辉三角形 · 查看更多 »

上面的列表回答下列问题

二项式定理和帕斯卡法則之间的比较

二项式定理有30个关系,而帕斯卡法則有5个。由于它们的共同之处2,杰卡德指数为5.71% = 2 / (30 + 5)。

参考

本文介绍二项式定理和帕斯卡法則之间的关系。要访问该信息提取每篇文章,请访问: