我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

二項分佈和二项式定理

快捷方式: 差异相似杰卡德相似系数参考

二項分佈和二项式定理之间的区别

二項分佈 vs. 二项式定理

在概率论和统计学中,二项分布(Binomial Distribution)是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n. 在初等代數中,二项式定理(Binomial theorem)描述了二项式的幂的代数展开。根据该定理,可以将两个数之和的整数次幂诸如(x + y)n 展开为类似 axbyc 项之和的恒等式,其中b、c均为非负整数且。系数a是依赖于 n 和b的正整数。当某项的指数为0时,通常略去不写。例如: (x+y)^4 \;.

之间二項分佈和二项式定理相似

二項分佈和二项式定理有1共同点(的联盟百科): 二項式係數

二項式係數

二項式係數在數學上是二項式定理中的係數族。其必然為正整數,且能以兩個非負整數為參數確定,此兩參數通常以n和k代表,並將二項式係數寫作\tbinom nk ,亦即是二項式冪(1 + x) n的多項式展式中,x k項的係數。如將二項式係數的n值順序排列成行,每行為k值由0至n列出,則構成帕斯卡三角形。 此數族亦常見於其他代數學領域中,尤其是組合數學。任何有n個元素的集合,由其衍生出擁有k個元素的子集,即由其中任意k個元素的組合,共有\tbinom nk個。故此\tbinom nk亦常讀作「n選取k」。二項式係數的特性使表達式\tbinom nk的定義不再局限於n和k均為非負整數及,然此等表達式仍被稱為二項式係數。 雖然此數族早已被發現(見帕斯卡三角形),但表達式\tbinom nk則是由安德烈亚斯·冯·厄廷格豪森於1826年始用。最早探討二項式係數的論述是十世紀的Halayudha寫的印度教典籍《Pingala的計量聖典》(chandaḥśāstra),及至約1150年,印度數學家Bhaskaracharya於其著作《Lilavati》Lilavati 第6節,第4章(見)。 中給出一個簡單的描述。 二項式係數亦有不同的符號表達方式,包括:C(n, k)、nCk、nCk、C^_,其中的C代表組合(combinations)或選擇(choices)。.

二項分佈和二項式係數 · 二項式係數和二项式定理 · 查看更多 »

上面的列表回答下列问题

二項分佈和二项式定理之间的比较

二項分佈有27个关系,而二项式定理有30个。由于它们的共同之处1,杰卡德指数为1.75% = 1 / (27 + 30)。

参考

本文介绍二項分佈和二项式定理之间的关系。要访问该信息提取每篇文章,请访问: