徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

二氰乙炔和氰

快捷方式: 差异相似杰卡德相似系数参考

二氰乙炔和氰之间的区别

二氰乙炔 vs. 氰

二氰乙炔,又称为低氮化碳或2-丁炔二腈(IUPAC命名法),是一种氮元素与碳元素形成的化合物,化学式为C4N2。这种分子的空间构型为直线形:N≡C−C≡C−C≡N(通常可以简写成NC4N),叁键与单键交替连接形成共轭体系。它可以看做乙炔中的两个氢原子被两个氰基所取代的产物。 在室温下,二氰乙炔是一种澄清的液体。由于它的标准摩尔生成焓正值很大,是一种吸热化合物,它可以爆炸并生成碳粉和氮气。二氰乙炔在氧气中燃烧产生蓝白色的火焰,温度高达5260 K(4990 °C,9010 °F),该火焰的温度比任何已知物质都要高。. 氰(Cyanogen),也称氰气,化学式为(CN),是碳和氮的化合物(N≡C—C≡N)。可用于有机合成,也用作消毒、杀虫的熏蒸剂。 氰在标准状况下是无色气体,带苦杏仁气味。燃烧时呈桃红色火焰,边缘侧带蓝色。氰溶于水、乙醇、乙醚。 氰的化学性质与卤素很相似,是拟卤素(或类卤素)的一种。氰气会被还原为毒性极强的氰化物。氰在高温下与氢气反应生成氰化氢。与氢氧化钾反应生成氰化钾和氰酸钾。氰加热至400°C以上聚合成不溶性的白色固体(CN)x。 氰是草酰胺的脱水产物,是草酸衍生的腈:.

之间二氰乙炔和氰相似

二氰乙炔和氰有(在联盟百科)4共同点: 乙炔氰化物

乙炔

乙炔,俗稱風煤(實際上風煤是指氧氣與乙炔組成之套件,風指壓縮氧、煤指乙炔,並非單單乙炔稱為風煤)、電石氣、電土,是炔烴化合物系列中體積最小的一員,主要作工業用途,特別是燒焊金屬方面。 乙炔於1836年由英國科學家艾德蒙·戴维(Edmund Davy)發現,化學式為,有一個如下圖所示的直线型結構: 乙炔在室溫下是無色、極易燃的氣體。純乙炔是無臭的,但工業用乙炔由於含有硫化氫、磷化氫等雜質,而有一股大蒜的氣味。乙炔的化學能主要貯存於它的三鍵中。 在攝氏400度以上, 乙炔會聚合生成乙烯基乙炔()和苯()。在攝氏900度以上則會形成炭黑。 碳酸鈣(石灰岩)和煤炭是生產乙炔的主要原料。首先,碳酸鈣會轉化為氧化鈣,煤炭則轉化為焦炭。然後氧化鈣和焦炭會發生反應形成碳化鈣和一氧化碳: 碳化钙加水會形成乙炔和氫氧化鈣:CaC2 +2H2O → C2H2↑ + Ca(OH)2.

乙炔和二氰乙炔 · 乙炔和氰 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

二氰乙炔和碳 · 氰和碳 · 查看更多 »

氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的雙原子气体分子,由于化学性质稳定而不容易发生化學反应。氮气是地球大气中含量最多的气体,佔總體積的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分離空氣後发现。氮属于氮族元素中的一种。 氮是宇宙中常見的元素,在銀河系及太陽系的豐度排第七名。其生成的原因推測是由於超新星中碳和氫產生的核融合。由於氮元素及其和氫、氧形成的常见化合物都极易揮發,因此在內太陽系中的類地行星中氮元素較不常見。不過和地球一样,其他行星及其卫星的大氣層中,气态的氮及其化合物很常见。 很多工业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体內,将转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。 含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克維拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物鹼(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。 氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。.

二氰乙炔和氮 · 氮和氰 · 查看更多 »

氰化物

--是特指带有氰离子(CN−)或氰基(-CN)的化合物,其中的碳原子和氮原子通过參键相连接。这一參键给予氰基以相当高的稳定性,使之在通常的化学反应中都以一个整体存在。因该基团具有和卤素类似的化学性质,常被称为拟卤素。通常为人所了解的氰化物都是无机氰化物,俗稱山奈或山埃(來自英語音譯“Cyanide”),是指包含有氰根离子(CN−)的无机盐,可认为是氢氰酸(HCN)的盐,常见的有氰化钾和氰化钠。它们多有剧毒,故而为世人熟知。另有有机氰化物,是由氰基通过单键与另外的碳原子结合而成。视结合方式的不同,有机氰化物可分类为腈(-CN)和异腈(-NC),相应的,氰基可被称为腈基(-CN)或异腈基(-NC)。.

二氰乙炔和氰化物 · 氰和氰化物 · 查看更多 »

上面的列表回答下列问题

二氰乙炔和氰之间的比较

二氰乙炔有27个关系,而氰有40个。由于它们的共同之处4,杰卡德指数为5.97% = 4 / (27 + 40)。

参考

本文介绍二氰乙炔和氰之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »