我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

二次互反律和利奥波德·克罗内克

快捷方式: 差异相似杰卡德相似系数参考

二次互反律和利奥波德·克罗内克之间的区别

二次互反律 vs. 利奥波德·克罗内克

在数论中,特别是在同余理论里,二次互反律(Law of Quadratic Reciprocity)是一个用于判别二次剩余,即二次同余方程x^2 \equiv p \pmod q 之整数解的存在性的定律。二次互反律揭示了方程x^2 \equiv p \pmod q 可解和 x^2 \equiv q \pmod p 可解的简单关系。运用二次互反律可以将模数较大的二次剩余判别问题转为模数较小的判别问题,并最后归结为较少的几个情况,从而在实际上解决了二次剩余的判别问题。然而,二次互反律只能提供二次剩余的存在性,对于二次同余方程的具体求解并没有实际帮助。 二次互反律常用勒让德符号表述:对于两个奇素数 p 和 q, 其中\left(\tfrac \right) 是勒让德符号。但是对于更一般的雅可比符号和希尔伯特符号也有对应的二次互反律。 欧拉和勒让德都曾经提出过二次互反律的猜想。但第一个严格的证明是由高斯在1796年作出的,随后他又发现了另外七个不同的证明。在《算数研究》一书和相关论文中,高斯将其称为“基石”: 此基石應當被視為此類型的定理中最為典雅的其中之一。(Art. 151) 私下里高斯把二次互反律誉为算术理论中的宝石,是一个黄金定律。 高斯之后雅可比、柯西、刘维尔、克罗内克、弗洛贝尼乌斯等也相继给出了新的证明。至今,二次互反律已有超过200个不同的的证明。二次互反律可以推广到更高次的情况,如三次互反律等等。. 利奥波德·克罗内克(Leopold Kronecker,),德国数学家与逻辑学家,出生于西里西亞利格尼茨(现属波兰的莱格尼察),卒于柏林。他认为算术与数学分析都必须以整数为基础,他曾说:“上帝创造了整数,其余都是人做的工作”(Bell 1986, 477页)。这与数学家格奥尔格·康托尔的观点相互对立。克罗内克是恩斯特·库默尔的学生和终身挚友。 以克罗内克命名的数学理论包括克罗内克δ、克罗内克积等。 Kronecker–Weber定理說明若K / \mathbb是有理數集\mathbb的有限阿貝爾擴張,則K是的一個分圓域的子域。 Kronecker引理說明: 若(x_n)_^\infty是一個實數數列,使得 存在且有限,則對於0及b_n \to \infty則有 Category:19世纪数学家 Category:德国数学家 Category:邏輯學家 Category:猶太科學家 Category:柏林洪堡大學教師 Category:柏林洪堡大學校友 Category:德國猶太人 Category:西里西亞人 分类:绅士科学家.

之间二次互反律和利奥波德·克罗内克相似

二次互反律和利奥波德·克罗内克有(在联盟百科)2共同点: 有理数整数

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

二次互反律和有理数 · 利奥波德·克罗内克和有理数 · 查看更多 »

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

二次互反律和整数 · 利奥波德·克罗内克和整数 · 查看更多 »

上面的列表回答下列问题

二次互反律和利奥波德·克罗内克之间的比较

二次互反律有37个关系,而利奥波德·克罗内克有12个。由于它们的共同之处2,杰卡德指数为4.08% = 2 / (37 + 12)。

参考

本文介绍二次互反律和利奥波德·克罗内克之间的关系。要访问该信息提取每篇文章,请访问: