徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

RNA干扰和免疫系统

快捷方式: 差异相似杰卡德相似系数参考

RNA干扰和免疫系统之间的区别

RNA干扰 vs. 免疫系统

RNA干扰(RNA interference,缩写为RNAi)是指一种分子生物学上由双链RNA诱发的基因沉默现象,其机制是通过阻碍特定基因的轉译或转录来抑制基因表达。当细胞中导入与内源性mRNA编码区同源的双链RNA时,该mRNA发生降解而导致基因表达沉默。与其它基因沉默现象不同的是,在植物和線蟲中,RNAi具有传递性,可在细胞之间传播,此現象被稱作系統性RNA干擾(systemic RNAi)。在秀丽隐杆线虫上实验时还可使子一代产生基因突变,甚至於可用喂食細菌給線蟲的方式讓線蟲得以產生RNA干擾現象。RNAi现象在生物中普遍存在。2006年,安德鲁·法厄(Andrew Z. Fire)与克雷格·梅洛(Craig C. Mello)由于在秀丽隐杆线虫的RNAi机制研究中的贡献而共同获得诺贝尔生理及医学奖。 RNAi与转录后基因沉默(post-transcriptional gene silencing and transgene silencing)在分子層次上被证实是同一种现象。. 免疫系统是生物体体内一系列的生物学结构和所组成的疾病防御系统。免疫系统可以检测小到病毒大到寄生虫等各类病原体和有害物质,并且在正常情况下能够将这些物质与生物体自身的健康细胞和组织区分开来。 病原体可以快速地进化和调整,来躲避免疫系统的侦测和攻击。为了能够在与病原体的对抗中获胜,生物体进化出了多种识别和消灭病原体的机制。就连简单的单细胞生物,如细菌,也发展出了可以对抗噬菌体感染的酶系统。一些真核生物,例如植物和昆虫,从它们古老的祖先那里继承了简单的免疫系统。这些免疫机制包括抗微生物多肽(防御素)、吞噬作用和补体系统。包括人类在内的有颌类脊椎动物则发展出更为复杂多样的防御机制。 典型的脊椎动物免疫系统由多种蛋白质、细胞、器官和组织所组成,它们之间相互作用,共同构成了一个精细的动态网络。作为复杂的免疫应答的一部分,人类的免疫系统可以通过不断地适应来更有效地识别特定的病原体。这种适应过程被定义为“适应性免疫”或“获得性免疫”。针对特定的病原体的初次入侵,免疫系统中的記憶T細胞能够产生“免疫记忆”;当该种病原体再次入侵时,这种记忆就可以使免疫系统迅速作出强化的免疫应答(即“适应性”)。而适应性免疫正是疫苗注射能够产生免疫力的生物学基础。 免疫系统的紊乱会导致多种疾病的产生。免疫系统的活力降低就会发生免疫缺陷,进而导致经常性和致命的感染。免疫缺陷可以是遗传性疾病,如重症聯合免疫缺陷;也可以由药物治疗或病菌感染引发,如艾滋病就是由于艾滋病毒感染而引发的适应性免疫缺陷综合症。另一方面,免疫系统異常会将正常的组织作为入侵者而进行攻击,从而引起自体免疫疾病。常见的自体免疫疾病包括慢性甲状腺炎、类风湿性关节炎、第一型糖尿病和系統性紅斑性狼瘡。.

之间RNA干扰和免疫系统相似

RNA干扰和免疫系统有(在联盟百科)8共同点: 突变真核生物生物類風濕性關節炎诺贝尔生理学或医学奖贅生物肥胖症

突变

突变(Mutation,即基因突变)在生物学上的含义,是指细胞中的遗传基因(通常指存在於細胞核中的去氧核糖核酸)发生的改变。它包括单个碱基改变所引起的点突变,或多个碱基的缺失、重复和插入。原因可以是细胞分裂时遗传基因的复制发生错误、或受化学物质、基因毒性、辐射或病毒的影响。 突变通常会导致细胞运作不正常或死亡,甚至可以在较高等生物中引发癌症。但同时,突变也被视为演化的“推动力”:不理想的突变会经天择过程被淘汰,而对物种有利的突变则会被累积下去。中性突變(neutral mutation)对物种沒有影响而逐渐累积,会导致间断平衡。.

RNA干扰和突变 · 免疫系统和突变 · 查看更多 »

真核生物

真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。 真核生物与原核生物的根本性区别是前者的细胞内含有细胞核,因此以真核来命名这一类细胞。许多真核细胞中还含有其它细胞器,如粒線體、叶绿体、高尔基体等。 由于具有细胞核,因此真核细胞的细胞分裂过程与没有细胞核的原核生物也大不相同。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于新壁總域演化支。 科學家相信,從基因證據來看,真核生物是細菌與古菌的基因融合體,它是某種古菌與細菌共生,異種結合的產物。.

RNA干扰和真核生物 · 免疫系统和真核生物 · 查看更多 »

生物

生物(拉丁语,德语: Organismus, ,又称有機體)是指稱類生命的个体。在生物学和生态学中, 地球上约有870萬種物種(±130萬),其中650萬種物種在陆地上,220万种生活在水中。 生物最重要和基本的特徵在生物會進行新陳代謝及遺傳兩點,前者說明所有生物一定會具備合成代谢以及分解代谢(兩個是完全相反的兩個生理反應過程),並且可以將遺傳物質複製,透過自我分裂生殖(無性生殖)或有性生殖,交由下一代繁殖下去以避免滅絕,这是類生命现象的基础。 生命的起源和生命各个分支之间的关系一直存在争议,古早的生命分類已經過時,近代古典生物學的分類又受到分子生物學的挑戰。一般而言,我們將生物分為兩大類:原核生物和真核生物。原核生物分为兩大域:细菌(Bacteria)和古菌(Archaea),这两个域相互之间的关系并不比他们和真核生物的关系更为接近。在演化史的研究上,原核生物和真核生物之间一直缺乏联系。類似麻煩的還有病毒與內共生細菌等的分類,隨著現代生物化學的研究逐漸深入,出現了有如物理學中存在量子現象一般,在特定微觀世界下許多傳統認知出現錯誤,導致以往常理被顛覆的情況。 真核生物的特徵是有細胞核以及其他膜狀細胞器(例如動物和植物體內的粒線體粒線體也可以說是植物動物體的發電廠因為他可以製造很多的能量,以及植物及藻類中的葉綠素),一種假說是叶绿体和线粒体是由内共生细菌(endosymbiotic bacteria)演化而来T.Cavalier-Smith (1987) The origin of eukaryote and archaebacterial cells, Annals of the New York Academy of Sciences 503, 17–54 。多细胞生物(又稱至於生物實在30班一年且出來則指包含多于一个细胞的生物,在地質學上直到五億年前才出現大爆發。.

RNA干扰和生物 · 免疫系统和生物 · 查看更多 »

類風濕性關節炎

類風濕性關節炎(英文:Rheumatoid arthritis,簡稱RA),是一個主要影響關節的長期持續性疾病。它通常導致關節發熱、腫脹和疼痛。疼痛和僵硬往往於休息後更惡化。最常見的是手腕和手涉及到身體兩側相同的關節。這個疾病也可能影響身體其他部分。這可能導致低紅血球細胞、肺部炎症、和心臟炎症。也可能會發燒和缺乏活力。通常症狀是逐漸超過數周至數月。 類風濕性關節炎的成因不明,但和基因與環境因素有關。作用機制包括了身體的免疫系統攻擊關節,造成關節囊的發炎與增厚,通常也會影響到骨頭和軟骨。診斷方式大多根據病患的身體表徵與症狀。X光和實驗室測試可以協助診斷或排除一些相似的疾病。如紅斑性狼瘡、,和纖維肌痛等疾病可能會有類似的症狀。 治療主要針對改善疼痛、減少發炎以及改善全身機能。適當的休息及運動、使用或輔具等皆能幫助治療改善。藥物方面,常使用止痛劑、類固醇、非類固醇抗發炎藥物來緩解症狀;(DMARD,包括羟氯喹、氨甲蝶呤等)亦可用來控制減緩病程,通常是在其他療程對病人無效時才會使用到此類藥物,然而此類藥物相較於其他療程也可能對病人造成較大的副作用。在特定狀況下,可能使用外科手術方式針對關節進行修復、、。大部份的替代療法皆無證據支持其有效。 類風溼性關節炎在已開發國家會影響約0.5至1%的成年人,每年十萬人中約有5至50人會罹患此疾病。此疾病多在中年發作,女性的好發程度為男性的2.5倍。類風溼性關節炎從1990年造成28000人死亡,到2013年則造成38000人死亡。第一個做出關於類風濕性關節炎描述是在1800年的巴黎,由 博士(1772–1840)做出 reproduced in 。類風溼性關節炎的原文「rheumatoid arthritis」源自希臘文,表示關節的出水與發炎。.

RNA干扰和類風濕性關節炎 · 免疫系统和類風濕性關節炎 · 查看更多 »

诺贝尔生理学或医学奖

诺贝尔生理学或医学奖(Nobelpriset i fysiologi eller medicin)由诺贝尔基金会管理,该奖项每年颁发一次,用于表彰在生理学或医学领域作出重要发现或发明的人。它是五项诺贝尔奖中的一项,诺贝尔奖是根据硝酸甘油炸药的发明者瑞典化学家阿尔弗雷德·诺贝尔的遗愿于1895年设立的。诺贝尔本人对实验生理学很感兴趣,并想为那些通过在实验室的科学发现而取得的新进展设立奖项。诺贝尔奖于每年12月10日的颁奖典礼上授予获奖者,这一天是诺贝尔的逝世纪念日,获奖者将被授予获奖证书及奖金证书。诺贝尔生理学或医学奖奖章的正面与物理学、化学及文学奖奖章相同,都镌刻着诺贝尔的浮雕像;但奖章的背面是独特的。 截至2015年,106次诺贝尔生理学或医学奖被授予了208名男性以及12名女性。第一枚诺贝尔生理学或医学奖于1901年授予德国生理学家埃米尔·阿道夫·冯·贝林,用于表彰他在血清疗法及白喉疫苗等方面所做的贡献。格蒂·科里是第一位获得该奖项的女性,她于1947年获得该奖,因其阐释了葡萄糖的代谢作用,这对治疗糖尿病以及解决众多医学问题有重要作用。 一些奖项至今仍有争议。包括1949年因提出前脑叶白质切除术而授予安东尼奥·埃加斯·莫尼斯的奖章,尽管这一做法受到了医疗机构的抗议。其他争议是由于对获奖人员的分歧而引起的。1952年,获奖者赛尔曼·瓦克斯曼被起诉至法庭,最终一半的专利权被赋予了其共同发现者之一但并未获得诺奖认同的艾伯特·沙茨。1962年这一奖项被授予詹姆斯·沃森,弗朗西斯·克里克和莫里斯·威尔金斯,表彰其在DNA的结构与性质方面所做的工作,但并未承认其他人的贡献,如在提名时已经逝世的奥斯瓦尔德·埃弗里和罗莎琳·富兰克林。因为诺贝尔奖的规则禁止提名死者,长寿也成为获奖的资产,有一项研究在长达50年之后才获得此奖。同时诺贝尔奖也禁止同一奖项的获奖者超过3人,鉴于过去半个世纪以来科学家们越来越倾向于团队合作,这一制度也导致了一些争议。.

RNA干扰和诺贝尔生理学或医学奖 · 免疫系统和诺贝尔生理学或医学奖 · 查看更多 »

贅生物

新生物、息肉或贅生物(neoplasm),是指身體細胞組織不正常的增生,當生長的數量龐大,便會成為腫瘤(tumour)。而腫瘤亦可以是良性或惡性的。 肿瘤(英語:tumor或tumour)在医学上是指细胞的异常病变,而不一定是身体上面的肿块。这一种病变,使身体部分细胞有不受控制的增生,許多時会集结成为肿块。肿瘤分为良性肿瘤、恶性肿瘤。 良性肿瘤生长速度缓慢,表面较光滑。并不侵入邻近的正常组织内。瘤体周围常形成包膜,因此与正常组织分界明显。除非长在要害部位,良性肿瘤一般不会致命,大多数可被完全切除,很少有复发。癌症即是最常见的恶性肿瘤。恶性肿瘤分为上皮源性的“癌”和间质源性的“肉瘤”。在恶性肿瘤中,这一些增生的细胞,除了会集结成为肿块,还会扩散至其他部位增生。 肿瘤细胞与正常细胞相比,有结构、功能和代谢的异常,它们具有超过正常的增生能力,这种增生和机体不相协调。非肿瘤性增生和肿瘤性增生不同,前者常有明显的刺激性因素,且增生限于一定的程度和时间,一旦此因素消除,即不再增生,但如超越一定的限度,发生质变,则也可变为肿瘤性增生。.

RNA干扰和贅生物 · 免疫系统和贅生物 · 查看更多 »

肥胖症

肥胖症(Obesity)是指體脂肪累積過多而對健康造成負面影響的身體狀態,可能導致壽命減短及各種健康問題。肥胖的標準常使用身體質量指數(BMI)來衡量,即以體重(公斤)除以身高(公尺)的平方 。西方人認為BMI大於 即為肥胖,介於25到間則為過重;一些东亚国家採用更严格的标准,例如台灣行政院衛生署(今衛生福利部)於2002年4月公布台灣成人的BMI≧27 即為肥胖,24≦BMI<27 則為過重。但幼兒並不適合用成人的BMI標準來評量。 肥胖會增加心血管疾病、第二型糖尿病、睡眠呼吸中止症、某些癌症、退化性關節炎及其他疾病的發生機會。而造成肥胖的主因常包括熱量攝取過多、欠缺運動及體質問題等,其他如基因缺陷、內分泌異常、藥物影響及精神疾病也可能造成肥胖。有種說法認為「肥胖的人由於代謝慢,因此即使吃得不多也會越來越胖」,但目前的科學證據傾向不支持此種論點,因為肥胖的人必須花更多能量維持較重的體重,所以他們的代謝率反而高於常人。 肥胖的主要治療方式有飲食計畫和運動。患者在日常飲食中必須避免高熱量(高油高糖)食物並增加高纖食物,若良好的飲食控制無法有效減重,則可以考慮搭配來減低食慾和抑制脂肪吸收。如果飲食、運動、甚至搭配藥物都不見效,用來減少胃容積的胃內水球置放術可能會有幫助,以手術來減少胃容積或腸道長度也能直接降低食量並減少營養素的吸收。 肥胖是一種很常見的,也是21世紀最重要的公共衛生問題之一。目前成人與兒童的肥胖盛行率都在上升,且女性較男性更常發生。2014年,全球有6億名成人(13%)和4200萬名五歲以下的孩童有肥胖問題。歷史上,常視肥胖為財富與多產的象徵,部分國家現今仍保有這樣的看法;然而在現代社會中(尤其是西方國家),肥胖已經受到汙名化。2013年,美國醫學會將肥胖定義為一種疾病。.

RNA干扰和肥胖症 · 免疫系统和肥胖症 · 查看更多 »

酶(Enzyme( ))是一类大分子生物催化劑。酶能加快化學反應的速度(即具有催化作用)。由酶催化的反應中,反應物稱爲底物,生成的物質稱爲產物。幾乎所有細胞內的代謝過程都離不開酶。酶能大大加快這些過程中各化學反應進行的速率,使代謝產生的物質和能量能滿足生物體的需求。細胞中酶的類型對可在該細胞中發生的代謝途徑的類型起決定作用。對酶進行研究的學科稱爲「酶學」(enzymology)。 目前已知酶可以催化超過5000種生化反應。大部分酶是蛋白質,有少部分酶是具有催化活性的RNA分子,这些酶被称为核酶。酶的特異性是由其獨特的三級結構決定的。 和所有的催化劑一樣,酶通過降低反應活化能加快化學反應的速率。一些酶可以將底物轉化爲產物的速率提高數百萬倍。一個比較極端的例子是。該酶可以使在無催化劑條件下需要進行數百萬年的化學反應在幾毫秒內完成。從化學原理上講,酶和其它所有催化劑一樣,反應不會使其物質量發生變化。酶亦不能改變化學平衡,這一點和其它催化劑也是一樣的。酶和其它催化劑的不同之處在於,它們的專一性要強得多。一些分子可以影響酶的活性。如酶抑制劑能降低酶的活性,酶激活劑能提高酶的活性。許多藥物及毒物是酶的抑制劑。當超出適宜的溫度和pH值後,酶的活性會顯著下降。 酶在工业和人们的日常生活中的应用也非常广泛。例如,药厂用特定的合成酶来合成抗生素;洗衣粉中添加酶能加速附着在衣物上的蛋白质、淀粉或脂肪漬的分解;嫩肉粉中加入木瓜蛋白酶能將蛋白質分解爲稍小的分子,使肉的口感更嫩滑。.

RNA干扰和酶 · 免疫系统和酶 · 查看更多 »

上面的列表回答下列问题

RNA干扰和免疫系统之间的比较

RNA干扰有31个关系,而免疫系统有260个。由于它们的共同之处8,杰卡德指数为2.75% = 8 / (31 + 260)。

参考

本文介绍RNA干扰和免疫系统之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »