徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

P/2010 A2

指数 P/2010 A2

P/2010 A2 (LINEAR)彗星是具有彗星也有小行星特徵的太陽系小天體之一,因此,在命名上一開始是給予彗星的名字。後來,它的軌道被證實是在小行星的主帶,並且有著彗星樣的尾巴,它就被分類為主帶彗星。分析來自哈伯太空望遠鏡的影像,顯示它的尾巴是由與其他的小行星碰撞產生的乾燥灰塵和礫石組成,而不是從彗星狀的冰升華產生的。 核的位置明顯的偏向一側不在尾巴的軸線上,並且在塵埃暈之外,這是在其它的彗星上從沒有見過的現象。尾部是由毫米大小的顆粒組成,因此會被太陽輻射壓力推離。 P/2010 A2是在2010年1月6日被林肯近地小行星研究小組(LINEAR)使用1米(36英吋)的反射望遠鏡裝配CCD照相機發現的,它被觀測了26天,由弧長推算軌道週期約3.5年,精確的軌道細節還需要再精鍊才能更準確的模擬軌道。它大約在被發現之前的一個月,於2009年12月初通過近日點(最接近太陽)。 由於遠日點(離太陽最遠)只有2.6天文單位 ,P/2010 A2 終其一生都位於2.7天文單位的凍結線內側。在凍結線的內側,揮發性冰是較為常見的。雖然並未偵測到氣體或是水蒸氣的成分,但是仍未能排除P/2010 A2的尾巴可以從隱藏在地殼下的冰昇華釋氣而形成 。 P/2010 A2的直徑大約是150米(460英呎),而剛發現時就懷疑他的直徑不超500米。 另一個天體,在2006年發現的半人馬60558 Echeclus,也被懷疑是釋氣的結果才成為一個不確定的分裂事件。 P/2010 A2的軌道與花神星族的成員相符,這個族群是由約一億多年前碰撞的碎片產生的。可能是造成恐龍滅絕罪魁禍首的K/T撞擊者,也有可能來自於花神星族。.

23 关系: 大衛·朱維特天文單位太陽輻射壓力小行星小行星60558小行星帶主帶彗星彗尾彗髮彗核彗星哈勃空间望远镜儒略年凍結線 (天文物理)白堊紀-第三紀滅絕事件花神星族遠日點近日點釋氣林肯近地小行星研究小組感光耦合元件

大衛·朱維特

大衛·朱維特(David C. Jewitt,),生於英國的美國天文學家。他曾在夏威夷大學天文研究所擔任教授,現任教於洛杉磯加利福尼亞大學。.

新!!: P/2010 A2和大衛·朱維特 · 查看更多 »

天文單位

天文單位(縮寫的標準符號為AU,也寫成au、a.u.或ua)是天文學上的長度單位,曾以地球與太陽的平均距離定義。2012年8月,在中国北京举行的国际天文学大会(IAU)第28届全体会议上,天文学家以无记名投票的方式,把天文单位固定为149,597,870,700米。新的天文单位以公尺来定义,而公尺的定义来源于真空中的光速,也就是说,天文单位现在不再与地球與太阳的實際距离挂钩,而且也不再受时间变化的影响(虽然天文单位最初的来源就是日地平均距离)。 國際度量衡局建議的縮寫符號是ua,但英語系的國家最常用的仍是AU,國際天文聯合會則推薦au,同時國際標準ISO 31-1也使用AU,后来的國際標準ISO 80000-3:2006又改成了ua。通常,大寫字母僅用於使用科學家的名字命名的單位符號,而au或a.u.也可以是原子單位或是任意單位;但是AU被廣泛的地區使用作為天文單位的符號。以1天文單位距離的值為單位的天文常數的值會以符號A標示。.

新!!: P/2010 A2和天文單位 · 查看更多 »

太陽輻射壓力

太陽輻射壓力是太陽輻射抵達物體時,施加在該物體的壓力,這是天文學上的現象。在太空動力學,太陽輻射壓力是非常有趣的,它也是軌道攝動的一個來源。 這種擾動的力量可以簡單的表示如下 F_.

新!!: P/2010 A2和太陽輻射壓力 · 查看更多 »

小行星

小行星是太陽系内類似行星環繞太陽運動,但體積和質量比行星小得多的天體。 至今為止在太陽系內一共已經發現了約127萬顆小行星,但這可能僅是所有小行星中的一小部分,只有少數這些小行星的直徑大於100公里。到1990年代為止最大的小行星是穀神星,但近年在古柏帶內發現的一些小行星的直徑比穀神星要大,比如2000年發現的伐樓拿(Varuna)的直徑為900公里,2002年發現的誇歐爾(Quaoar)直徑為1280公里,2004年發現的厄耳枯斯的直徑甚至可能達到1800公里。2003年發現的塞德娜(小行星90377)位於古柏帶以外,其直徑約為1500公里。 根據估計,小行星的數目應該有數百萬,詳見小行星列表,而最大型的小行星現在開始重新分類,被定義為矮行星。.

新!!: P/2010 A2和小行星 · 查看更多 »

小行星60558

60558厄開克洛斯 (或 ,來自),是在外太陽系的半人馬小行星,它是太空監視在2000年發現的,最初被分類為小行星,臨時名稱是 (也可以寫成2000 EC98)。在2001年,法國貝桑松 (Besançon) 天文台的魯斯洛 (Rousselot) 和佩蒂特 (Petit) 的研究沒有發現彗星活動的證據,但是2005年12月下旬和2006年初發現有彗星的彗髮 。小天體命名委員會 (CSBN) 給了它彗星的名稱: 174P/厄開克洛斯 (Echeclus)。.

新!!: P/2010 A2和小行星60558 · 查看更多 »

小行星帶

#重定向 主小行星帶.

新!!: P/2010 A2和小行星帶 · 查看更多 »

主帶彗星

主帶彗星是在主要的小行星帶內的天體,但在部分的軌道上會呈現出彗星的活動和特徵。噴射推進實驗室定義主帶小行星是轨道半長軸大於2天文單位,但不超過3.2天文單位的小行星,而近日點 (最接近太陽的距離) 不小於1.6天文單位。.

新!!: P/2010 A2和主帶彗星 · 查看更多 »

度在中文中常用作单位,可以指:.

新!!: P/2010 A2和度 · 查看更多 »

弧是一條平面曲線,它是圓上兩點間的一段,包含兩個端點。 連接弧的兩個端點之間的線段被命名為弦。 若圓心位於弧與弦連接成的封閉圖形之內,這段弧稱為優弧。若圓心位於弧與弦連接成的封閉圖形之外,這段弧稱為劣弧。.

新!!: P/2010 A2和弧 · 查看更多 »

彗尾

彗尾和彗髮是彗星在內太陽系受到太陽照射,從地球可以看見的結構,是由直接反射陽光的灰塵和從發射出光輝的離子化氣體兩種形成來源結合成的。多數的彗星都很暗淡,必須用望遠鏡才能看見,但是每十年左右,都會有幾顆亮到可以用裸眼直接看見的彗星。 每顆彗星的氣體和塵埃噴流形成的彗尾都是獨特的,指向的方向也都略有不同。塵埃尾會被拖曳在彗星軌道的後方,他經常會因為曲線的形狀而形成反尾。同時,由氣體構成的離子尾永遠都指向背向太陽的方向,因為這些氣體受到太陽風的影響遠比塵埃來得強烈,跟隨的是磁力線,而不是軌道的路徑。從地球觀測的視差有時會使彗尾看似指向相反的方向。 彗星固體的核心大小一般不會超過50公里的直徑,但是彗髮可以比太陽還要大,並且彗尾的長度可已超過1天文單位(1億5千萬公里)或是更長 。 對反尾的觀測在太陽風的發現上有著重大的貢獻。古中国在对彗星的长期观察中,注意到彗尾总是背向太阳,西元653年正史描述当彗星早上出现时,它的尾指向西,而当它晚上出现时,它的尾巴指向东,古書推斷是太阳的气将彗尾吹向背离太阳的方向。 離子尾的形成是太陽的紫外線輻射對彗髮產生光電效應的結果。一旦質點被游離,它們會獲得淨值為正的電荷,並且產生"誘導磁層"包圍著彗星。彗星和誘導磁場對向外流動的太陽風粒子形成一個障礙,彗星在軌道上相對於太陽風的速度是超音速的,因此在太陽風流動方向的彗星前端形成弓形震波。在這個弓形震波,彗星高濃度的離子(稱為"吸合離子")聚集並"載入"活動中的電漿與太陽磁場,而這些場線披覆在彗星的周圍形成了離子尾 。.

新!!: P/2010 A2和彗尾 · 查看更多 »

彗髮

彗髮,是環繞在彗核周圍的雲狀物。彗星在繞太陽的軌道上運轉,當接近太陽時,太陽的熱力會使彗核物質熔解並昇華為氣體,就形成了彗髮;但要--意的是,彗髮並不包括彗尾(下段另述)。 彗髮的成分通常是冰與塵埃。 当彗星处于距离太阳的3-4个天文单位内时,从彗核流出时的挥发物中的水占据比例高达90%。在H2O母体分子主要是通过光解和一个更小的程度上被破坏。相比光化学,太阳风在水的破坏起到一个小角色。大的塵埃顆粒會沿著軌道散佈,而小的顆粒會被來自太陽的光壓推離,成為拖曳在後的彗尾。 彗髮使得彗星的外觀在望遠鏡的觀測下呈現「模糊」的容貌,因而很容易與恆星區別。美國的國家航空暨太空總署的星塵號太空船曾經深入威爾德二號彗星探測,並帶回彗髮中的顆粒樣本。.

新!!: P/2010 A2和彗髮 · 查看更多 »

彗核

彗核通常被認為是彗星中心的固體部份,核心是由岩石、塵埃和冰凍的氣體組合成的一顆小行星。當被太陽加熱時,氣體昇華或是被點燃,成為環繞在核心周圍的大氣層,稱為彗髮。由太陽的輻射壓和太陽風施加在彗髮的力量導致一條極大且背向太陽彗尾。 因為有些彗星曾無緣無故的分裂開來,因此天文學家相信彗核是易碎的。 多數彗星的彗核直徑被認為大約或小於10英哩(16公里),但是,我們已經知道的彗星直徑從100米到40公里都有。 哈雷彗星的核像馬鈴薯(16×8×8),由等量的冰和塵埃組成,而冰的80%是水冰,15%是一氧化碳,其餘的幾乎都是二氧化碳、甲烷和氨。科學家相信其他彗星的化學成分也類似哈雷彗星。哈雷的彗核是極度的攸黑,天文學家相信,或許其他彗核也是,覆蓋在大部分是冰核心外面的是塵埃和岩石組成的黑色外殼,只有當彗星外殼上的孔洞朝向太陽時,內部才會被陽光加溫,氣體才會被釋放出來。 在2001年,當深空1號太空船飛越過包瑞利彗星時,發現他的彗核(8×4公里)大約是哈雷彗星的一半大。包瑞利彗核的形狀也像是馬鈴薯,並且表面也是黑暗的。也像哈雷一樣,包瑞利彗星只有在外殼的孔洞暴露在陽光下時,才會有一小部分的區域釋放出氣體。 海爾-波普彗星的彗核直徑估計在30-40公里之間,因為他的彗核特別大,能釋放出大量的氣體和塵埃,使得海爾波普在裸眼的觀察下顯得特別明亮。 维尔特二号彗星的彗核直徑大約5公里, P/2007 R5的彗核直徑大約在100-200米,.

新!!: P/2010 A2和彗核 · 查看更多 »

彗星

彗星(Comet,有時也被誤記為慧星)是由冰構成的太陽系小天體(SSSB),當他朝向太陽接近時,會被加熱並且開始釋氣,展示出可見的大氣層,也就是彗髮,有時也會有彗尾。這些現象是由太陽輻射和太陽風共同對彗核作用造成的。彗核是由鬆散的冰、塵埃、和小岩石構成的,大小從P/2007 R5的數百米至海爾博普彗星的數十公里不等,但大部分都不會超過16公里。 彗星的軌道週期範圍也很大,可以從幾年到幾百萬年。短週期彗星來自超越至海王星軌道之外的柯伊伯帶,或是與離散盤有所關聯 。長週期彗星被認為起源於歐特雲,這是在古柏帶外面,伸展至最近恆星一半距離上,由冰凍天體構成的球殼。長週期彗星受到路過恆星和銀河潮汐的引力攝動而直接朝向太陽前進。雙曲線軌道的彗星可能在進入內太陽系之前曾經被沿著雙曲線軌跡被拋射至星際空間,則只會穿越太陽系一次。來自太陽系外,在銀河系內可能是常見的系外彗星也曾經被檢測到。 彗星與小行星的區別只在於存在著包圍彗核的大氣層,未受到引力的拘束而擴散著。這些大氣層有一部分被稱為彗髮(在中央包圍著彗核的大氣層),其它的則是彗尾(受到來自太陽的太陽風電漿和光壓作用,從彗髮被剝離的氣體、塵埃、和帶電粒子,通常呈線性延展的部分)。然而,熄火彗星因為已經接近太陽許多次,幾乎已經失去了所有可揮發的氣體和塵埃,所以就顯得類似於小的小行星。小行星被認為與彗星有著不同的起源,是在木星軌道內側形成的,而不是在太陽系的外側。主帶彗星和活躍的半人馬小行星的發現,已經使得小行星和彗星之間的差異變得模糊不清。 ,已經知道的彗星有4,894顆,其中大約有1,500顆是克魯茲族彗星和大約484顆短週期彗星,而且這個數量還在穩定的增加中。然而,這只是潛在彗星族群中微不足道的數量:估計在外太陽系的儲藏所內類似的彗星體數量可能達到一兆顆。儘管大多數的彗星都是暗淡和不夠引人注目的,但平均大概每年會有一顆裸眼可見的彗星,其中特別明亮的就會被稱為"大彗星"。 在2014年1月22日,ESA科學家的報告首次明確的指出在矮行星穀神星,也是小行星帶中最大的天體,有水氣存在。這項檢測是通過赫歇爾太空望遠鏡使用遠紅外線技術完成的。此一發現是出人意料之外的,因為彗星,不是小行星,才會有這種典型的"噴流萌芽和羽流"。根據其中一位科學家的說法:"彗星和小行星之間的區隔是越來越模糊了"。 古代也有彗星出现的记录,古人一般認為彗星是凶兆。.

新!!: P/2010 A2和彗星 · 查看更多 »

哈勃空间望远镜

哈勃太空望遠鏡(Hubble Space Telescope,HST),是以天文學家愛德溫·哈伯為名,在地球軌道的望遠鏡。哈勃望远镜接收地面控制中心(美国马里兰州的霍普金斯大学内)的指令并将各种观测数据通过无线电传输回地球。由于它位于地球大氣層之上,因此獲得了地基望遠鏡所沒有的好處:影像不受大氣湍流的擾動、視相度絕佳,且无大氣散射造成的背景光,還能觀測會被臭氧層吸收的紫外線。於1990年發射之後,已經成為天文史上最重要的儀器。它成功弥补了地面觀測的不足,幫助天文學家解決了許多天文学上的基本問題,使得人类对天文物理有更多的認識。此外,哈勃的超深空視場则是天文學家目前能獲得的最深入、也是最敏銳的太空光學影像。 哈勃太空望遠鏡和康普頓γ射線天文台、錢德拉X光天文台、史匹哲太空望遠鏡都是美國太空總署大型轨道天文台计划的一部分。哈勃空间望远镜由NASA和ESA合作共同管理。.

新!!: P/2010 A2和哈勃空间望远镜 · 查看更多 »

儒略年

儒略年(符號:a)是天文學中測量時間的測量單位,定義的數值為365.25天,每天為國際單位的86400秒,總數為31,557,600秒。這個數值是西方社會早期使用儒略曆中年的平均長度,並且是這個單位的名稱。然而,因為儒略年只是測量時間的單位,並沒有針對特定的日期,因此儒略年與儒略曆或任何其他的曆都沒有關聯,也與許多其他型式年的定義沒有關聯。.

新!!: P/2010 A2和儒略年 · 查看更多 »

凍結線 (天文物理)

凍結線或譯為雪線,在天文學或行星科學,雪線位於太陽星雲中從原始太陽的中心向外起算的一個特定距離,該距離以外的氣盤溫度夠低,以至於氫的化合物,如水、氨和甲烷能凝聚成為固體的冰凍顆粒。依據密度,這個溫度估計在150K。這個名詞是借用土壤科學中凍線的概念。 太陽系的雪線距離為2.7天文單位,位於小行星帶。溫度在雪線之下的低溫能讓更多的固體顆粒吸積成為微行星,最終能成為行星。因此,雪線將恆星系劃分為擁有固態物體但揮發性物質稀少的類地行星區域,以及富含揮發性物質與冰冷物體的類木行星區域 。.

新!!: P/2010 A2和凍結線 (天文物理) · 查看更多 »

白堊紀-第三紀滅絕事件

#重定向 白垩纪-第三纪灭绝事件.

新!!: P/2010 A2和白堊紀-第三紀滅絕事件 · 查看更多 »

花神星族

花神星族(英語:Flora family)是小行星主帶中的一個很大的小行星族,光譜上屬於S-型小行星,其起源和星族成員數量迄今仍不清楚,据估計主帶中的4%-5%都屬於這個星族。由於这个星族的邊界不明確,而且8号小行星花神星靠近边界,因此未將花神星納入時这个星族也被稱為線女星族(e.g. the WAM analysis by Zappala 1995)。.

新!!: P/2010 A2和花神星族 · 查看更多 »

遠日點

#重定向 近日點和遠日點.

新!!: P/2010 A2和遠日點 · 查看更多 »

近日點

#重定向 近日點和遠日點.

新!!: P/2010 A2和近日點 · 查看更多 »

釋氣

釋氣 (有時稱為氣體揮發,特別是參考室內空氣品質) 是一些材料因為分解、通風、或吸收所釋放出的氣體。例如,研究顯示大氣層中二氧化碳的濃度有時和海洋的釋氣有所關聯。它可以包含昇華和蒸發等,一種物質變成氣體的相變,以及脫附,來自容器裂縫或內部的氣體產品滲漏造成的緩慢化學反應。沸騰通常被認為是一種單純的釋氣現象,因為它是由相同物質的液體相變成為蒸氣的作用。.

新!!: P/2010 A2和釋氣 · 查看更多 »

林肯近地小行星研究小組

林肯近地小行星研究小組(Lincoln Near-Earth Asteroid Research,LINEAR) 計畫是由美國空軍、美國太空總署及麻省理工大學的林肯實驗室所組成,而其簡稱多譯為「麗妮兒或林尼爾」。該小組成立於1998年,其目的是尋找及記錄對地球存在威脅的近地小行星。從1998年起,很負責的檢測出大部份的小行星,直到被卡特林那巡天系統超越。迄2007年12月31日,LINEAR已經檢測到226,193顆新天體,其中包括2019顆近地小行星和236顆彗星。LINEAR所有的發現都是使用機器人望遠鏡。 最初的測試場所可以回溯到1972年,而在1980年代初期,原型建設完成,林肯實驗室的實驗測試系統:ETS(新墨西哥州,MPC天文台代碼704)。1996年,LINEAR計畫開始運作一個近地天體(NEO) 的發現裝置,使用1米口徑的地基光電深空監控(Ground-based Electro-Optical Deep Space Surveillance,GEODSS)望遠鏡。這種廣角的光學望遠鏡是空軍設計來觀察地球軌道上的太空船。LINEAR計畫使用的GEODSS是林肯實驗室實驗測試網站位於新墨西哥州索柯洛白砂導彈靶場的儀器,然後資料送至位於麻塞諸塞州列星頓漢斯科姆空軍基地的林肯實驗室。 在1997年3月至7月,一個1024 × 1024 像素的電荷耦合元件(CCD)檢測器進行視野測試,而這個探測器的視野僅約望遠鏡視野的五分之一,就發現了4顆近地天體。在1997年10月,一個由1960 X 2560像素構成的CCD,完整的涵蓋了望遠鏡2平方度的視野,在使用中共成功的發現9顆新的近地天體。從1997年11月至1998年1月的,在這兩個大型和小型的CCD檢測器的使用期間,又增加了5顆近地天體。 從1999年10月開始,第2架1米望遠鏡也加入搜尋的工作。在2002年,第3架口徑0.5米的望遠鏡被加入線上以提供這兩架1米望遠鏡發現天體的後續追蹤。目前,LINEAR望遠鏡每天晚上沿著黃道觀察預測中最可能有近地天體進入的區域五次,以搜尋這些區域內的近地天體。CCD的靈敏度,和相對快速的資料輸出,使LINEAR每個夜晚的檢測都可以覆蓋大部份的天空。目前,LINEAR計畫仍然負責近地天體的主要發現。 這個計畫的首席研究員是格蘭特·斯托克,共同研究員包括珍妮佛·埃文斯和埃里克·皮爾斯。 除了發現數以萬計的小行星(迄2007年12月31日為225,957顆小行星),LINEAR也發現、共同發現或再發現一些週期彗星,包括:11P/坦普爾-斯威夫特-林尼爾彗星、146P/Shoemaker-LINEAR、148P/Anderson-LINEAR、156P/Russell-LINEAR、158P/Kowal-LINEAR、160P/林尼爾(LINEAR 43)、165P/林尼爾(LINEAR 10)、和176P/LINEAR(LINEAR 52,118401 LINEAR:在分類上暨是彗星也是小行星的5顆天體之一)。.

新!!: P/2010 A2和林肯近地小行星研究小組 · 查看更多 »

感光耦合元件

电荷耦合器件(Charge-coupled Device,縮寫:CCD),是一種集成電路,上有許多排列整齊的電容,能感應光線,並將影像轉變成數字信号。經由外部電路的控制,每個小電容能將其所帶的電荷轉給它相鄰的電容。CCD廣泛應用在數位攝影、天文學,尤其是光學遙測技術(photometry)、光學與頻譜望遠鏡,和高速攝影技術如幸運成像。.

新!!: P/2010 A2和感光耦合元件 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »