徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

C-型小行星

指数 C-型小行星

C-型小行星是含碳的小行星,它們是最普通的小行星,約佔已知小行星的75% ,並且在2.7天文單位之外的小行星帶所佔的比例更高,並且以這種小行星為主。C-型小行星在實際上的比例可能還要更高,因為除了D-型之外,C-型小行星更深入主帶外緣,並且比其他類型的小行星更為暗淡。.

24 关系: 健神星双筒望远镜天文單位太陽太陽星雲小行星小行星324小行星光譜分類B-型小行星碳質球粒隕石穀神星紫外线D-型小行星衝 (天體位置)视星等電磁波譜F-型小行星G-型小行星S-型小行星水合望远镜

健神星

健神星是主帶小行星內第四大的小行星,稍微有一些橢圓,直徑大約有300-500公里,並且估計佔有小行星帶3%的質量。 在主帶中,它是黑暗的C型小行星,也是這一區內最大的一顆小行星。C型小行星是主帶外緣最主要的小行星,分佈在2.82天文單位的柯克伍德空隙之外。它黑暗的表面和與太陽的距離大於平均距離,使從地球觀測到的它在大的小行星中顯得很黯淡。事實上,在早先發現的23顆小行星中,它是第三暗的,只有芙女星(13號小行星)和海女星(17號小行星)在衝的時候仍比它暗淡。.

新!!: C-型小行星和健神星 · 查看更多 »

双筒望远镜

双筒望远镜(或直接簡稱雙筒鏡,也稱之為野外鏡)是将两个相同的或者镜像对称的望远镜并排連在一个架子上使得它们始终对准同一方向而制成的望远镜。使用者可透过它同时以双眼观察远处景象。双筒望远镜比单筒望远镜提供更高的深度和距离感。雙筒鏡也可以成由兩個短的折射望遠鏡組合,用於觀看遙遠目標的設備。 最常见的双筒望远镜的大小正好适合双手托拿,它包括内部的反射系统,这个系统可以缩短望远镜的长度,使它短于透镜的焦距。此外它还可以增大物镜之间的距离来改善深度感。所有常见的双筒望远镜是伽利略式的,或者使用稜镜来呈现一个正像。 大的双筒望远镜比较重,不易稳定地拿住,因此一般被固定在三腳架上或其它支柱上。在第二次世界大战中美国制造过非常大的(10吨),其物镜的距离相当远的(15米)大型双筒望远镜来确定25公里以外的海上目标的距离。目前世界上最大的双筒望远镜是位于美国亞利桑那州的大雙筒望遠鏡(Large Binocular Telescope,LBT)。.

新!!: C-型小行星和双筒望远镜 · 查看更多 »

天文單位

天文單位(縮寫的標準符號為AU,也寫成au、a.u.或ua)是天文學上的長度單位,曾以地球與太陽的平均距離定義。2012年8月,在中国北京举行的国际天文学大会(IAU)第28届全体会议上,天文学家以无记名投票的方式,把天文单位固定为149,597,870,700米。新的天文单位以公尺来定义,而公尺的定义来源于真空中的光速,也就是说,天文单位现在不再与地球與太阳的實際距离挂钩,而且也不再受时间变化的影响(虽然天文单位最初的来源就是日地平均距离)。 國際度量衡局建議的縮寫符號是ua,但英語系的國家最常用的仍是AU,國際天文聯合會則推薦au,同時國際標準ISO 31-1也使用AU,后来的國際標準ISO 80000-3:2006又改成了ua。通常,大寫字母僅用於使用科學家的名字命名的單位符號,而au或a.u.也可以是原子單位或是任意單位;但是AU被廣泛的地區使用作為天文單位的符號。以1天文單位距離的值為單位的天文常數的值會以符號A標示。.

新!!: C-型小行星和天文單位 · 查看更多 »

太陽

#重定向 太阳.

新!!: C-型小行星和太陽 · 查看更多 »

太陽星雲

太陽星雲相信是讓地球所在的太陽系形成的氣體雲氣,這個星雲假說最早是在1734年由伊曼紐·斯威登堡提出的。在1755年,熟知斯威登堡工作的康德將理論做了更進一步的開發,他認為在星雲慢慢的旋轉下,由於引力的作用雲氣逐漸坍塌和漸漸變得扁平,最後形成恆星和行星。拉普拉斯在1796年也提出了相同的模型。這些可以被認為是早期的宇宙論。 當初僅適用於我們自己太陽系的形成理論,在我們的銀河系內發現了超過200個外太陽系之後,理論學家認為這個理論應該要能適用整個宇宙中的行星形成。.

新!!: C-型小行星和太陽星雲 · 查看更多 »

小行星

小行星是太陽系内類似行星環繞太陽運動,但體積和質量比行星小得多的天體。 至今為止在太陽系內一共已經發現了約127萬顆小行星,但這可能僅是所有小行星中的一小部分,只有少數這些小行星的直徑大於100公里。到1990年代為止最大的小行星是穀神星,但近年在古柏帶內發現的一些小行星的直徑比穀神星要大,比如2000年發現的伐樓拿(Varuna)的直徑為900公里,2002年發現的誇歐爾(Quaoar)直徑為1280公里,2004年發現的厄耳枯斯的直徑甚至可能達到1800公里。2003年發現的塞德娜(小行星90377)位於古柏帶以外,其直徑約為1500公里。 根據估計,小行星的數目應該有數百萬,詳見小行星列表,而最大型的小行星現在開始重新分類,被定義為矮行星。.

新!!: C-型小行星和小行星 · 查看更多 »

小行星324

小行星324(英语:324 Bamberga)是一颗C型小行星,于1892年2月25日由奧地利天文学家约翰·帕利萨在维也纳发现。在当时,这颗直径超过200千米的小行星成为了小行星带中最大的小行星之一。除了近地天体之外,这是最后一颗人类发现的能用双筒望远镜观测的小行星。小行星324最大相对亮度高达8.0,在所有已知的小行星中排名第11,其亮度与土星的天然卫星泰坦相同。.

新!!: C-型小行星和小行星324 · 查看更多 »

小行星光譜分類

小行星光譜分類是依據小行星的顏色、光譜型態,有時還參考反照率的分類法。這些類型被認為是對應於小行星的表面成分。對於內部沒有差異的小天體,表面和內部的組成可以視為是相同的,而大的天體,像是穀神星和灶神星,都已經知道有內部的構造。 在小行星光譜分類中可以找到各種類型的列表。.

新!!: C-型小行星和小行星光譜分類 · 查看更多 »

B-型小行星

B-型小行星是一種相對較罕見的碳質小行星,屬於更廣泛的C-群。在小行星的族群中,B-型小行星,包括第二大的小行星 - 智神星,在主帶的外側和高傾角的智神星族小行星都是含量豐富的主導者。它們被認為是在早期的太陽系含量豐富的原始、揮發性的殘餘。.

新!!: C-型小行星和B-型小行星 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

新!!: C-型小行星和碳 · 查看更多 »

碳質球粒隕石

碳質球粒隕石或C球粒隕石是球粒隕石,至少有8種已知的群組和許多尚未分類的隕石屬於這一類型,它們包括許多種已知的原始隕石。C球粒隕石只佔墜落隕石總數的一小部分(4.6%)。 一些著名的碳質球粒隕石是:、默奇森隕石、奧蓋爾隕石、、、塔吉什湖隕石、和薩特磨坊隕石。.

新!!: C-型小行星和碳質球粒隕石 · 查看更多 »

穀神星

星(Ceres,; 小行星序號:1 Ceres)是在火星和木星軌道之間的主小行星帶中最亮的天體。它的直徑大約是,使它成為海王星軌道以內最大的小行星。在太陽系天體大小列表排名第35,是在海王星軌道內唯一被標示為矮行星的天體。穀神星由岩石和冰組成,估計它的質量佔整個主小行星帶的三分之一。穀神星也是主小行星帶唯一已知自身達到流體靜力平衡的天體。從地球看穀神星,它的視星等範圍在+6.7至+9.3之間,因此即使在最亮時,除非天空是非常的黑暗,否則依然是太暗淡而難以用肉眼直接看見。1801年1月1日意大利人朱塞普·皮亞齊在巴勒莫首先發現了穀神星。最初被當成一顆行星,随着越來越多的小天體在相似的軌道上被發現,因此在1850年代被重分類為小行星。 穀神星顯示已經有區分成岩石、核和冰的地函,並且在冰層之下可能留有液態水的內部海洋。表面可能是水冰和不同的水合物礦物,像是黏土和碳酸鹽,的混合。在2014年1月,在穀神星的幾個地區都檢測到排放出的水蒸氣。這是出乎意料之外的,在主小行星帶的大天體床不會發出水蒸氣,因為這是彗星的特徵。 美國NASA的機器人曙光號在2015年3月6日進入繞行穀神星的軌道。從2015年1月,曙光號就以前所未見的高解析度傳回影像,顯示表面有著坑坑窪窪。兩個獨特的亮點(或高反照率特徵)出現在撞擊坑內(不同於早些時候哈伯太空望遠鏡在一個撞擊坑中觀測到的影像。);出現於2015年2月19日的影像,導致考慮可能有冰火山 或釋氣的發想。在2015年3月3日,NASA的一位發言人說,這些點符合含冰或鹽的反光物質,但不太可能是冰。在2015年5月11日,NASA釋放出高解析的影像,顯示不是一個或兩個點,實際上在高解析的影像上有好幾個。在2015年12月9日,NASA的科學家報導,穀神星的亮斑可能是一種類型的鹽類,特別是“滷水”,包括硫酸鎂等硫酸水合物(MgSO4·6H2O);也發現這些斑點與富含氨的黏土相關聯。2015年10月,NASA釋出了由曙光號拍攝的真實色彩穀神星影像。.

新!!: C-型小行星和穀神星 · 查看更多 »

紫外线

紫外線(Ultraviolet,簡稱為UV),為波長在10nm至400nm之間的電磁波,波長比可見光短,但比X射線長。太陽光中含有部分的紫外線,電弧、水銀燈、黑光燈也會發出紫外線。雖然紫外線不屬於游離輻射但紫外線仍會引發化學反應與使一些物質發出螢光。 而小于200纳米的紫外線輻射會被空氣強烈的吸收,因此稱之為真空紫外線The ozone layer protects humans from this.

新!!: C-型小行星和紫外线 · 查看更多 »

D-型小行星

D-型小行星有非常低的反照率和無特徵的淺紅色電磁頻譜 。它被認為成分中富含有機矽酸鹽、碳、和無水矽酸鹽,在其內部可能還有水冰 。發現的D-型小行星主要分布在小行星帶的外側和更外面的區域;例如阿達拉 (Atala)、阿基里斯 (Achilles)、霍克得 (Hektor)和希達高 (Hidalgo)。 尼斯模型認為D-型小行星是被捕獲的古柏帶天體。 在1992年,Larry A. Lebofsky和同事發表一篇文章,他們發現主帶的D-型小行星 Irmintraud 的光譜在3微米的特徵Lebofsky, Larry A. (1992) NASA Technical Reports Server. N92-10830.

新!!: C-型小行星和D-型小行星 · 查看更多 »

衝 (天體位置)

衝(英文:opposition,亦稱衝日)是位置天文學的一個名詞,是从一個選定的特定天體上(通常是地球)為基準,觀察另一個天體與參考天體(通常是太陽)的相對位置時。當三者在一條直線上,但特定天體位於參考天體及另一個天體的中間;參考天體相對於另一個天體的位置,謂之衝。明確的說,當一顆行星在衝的位置時(以地球為基準的特定天體),它與太陽的的黃經相差180°,即天體與太陽各在地球的兩側的天文現象。相對於衝日的現象為合日。 理論上除太陽、地球與地球軌道內天體(如內行星等)之外,其餘所有天體皆可有衝日現象發生,現多用在太陽系內運行之天體(如外行星、小行星、彗星等)。根據地球與該天體的會合周期,該天體相對於地球在每年有一至兩次衝日(絕大部份時間只有一次),一般天文年曆皆有列出各太陽系天體衝日時刻。 衝只發生在外側行星。 月球,說它環繞地球不如環繞太陽真切,在衝時是滿月的月相,而在嚴謹定義下的衝,會發生月食。.

新!!: C-型小行星和衝 (天體位置) · 查看更多 »

视星等

视星等(apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(亮度单位)的视星等为-13.98。 但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.45,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。 因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。 由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。 如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。 另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星。 星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。.

新!!: C-型小行星和视星等 · 查看更多 »

電磁波譜

在電磁學裏,電磁波譜包括電磁輻射所有可能的頻率。一個物體的電磁波譜專指的是這物體所發射或吸收的電磁輻射(又稱電磁波)的特徵頻率分佈。 电磁波谱频率从低到高分別列为无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。可见光只是电磁波谱中一个很小的部分。電磁波譜波長有長到數千公里,也有短到只有原子的一小段。短波長的極限被認為,幾乎等於普朗克長度,長波長的極限被認為,等於整個宇宙的大小,雖然原則上,電磁波譜是無限的,而且連續的。.

新!!: C-型小行星和電磁波譜 · 查看更多 »

F-型小行星

F-型小行星是一種相對來說比較罕見含有碳質的小行星類型,屬於C-群。.

新!!: C-型小行星和F-型小行星 · 查看更多 »

G-型小行星

G-型小行星 是一種相對來說比較少見的碳質小行星,在這一型中最值得注意的是穀神星。.

新!!: C-型小行星和G-型小行星 · 查看更多 »

S-型小行星

S-型小行星是由以矽質為主組成的,是在C-型小行星之後第二大的族群,大約有17%的小行星屬於這個族群。.

新!!: C-型小行星和S-型小行星 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

新!!: C-型小行星和氢 · 查看更多 »

氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.

新!!: C-型小行星和氦 · 查看更多 »

水合

水合反应(hydration reaction),也叫作水化。 在无机化学中指物质溶解在水里时,与水发生的化学作用。一般指溶质分子(或离子)和水分子发生作用,形成水合分子(或水合离子)的过程。 例子 无水硫酸铜与水作用生成五水硫酸铜: CuSO4+5H2O→CuSO4·5H2O 在有机化学中指分子中的不饱和键(双键或三键)在催化剂作用下与水化合的作用。如乙烯与水在一定温度、压力和催化剂的条件下,发生反应生成乙醇: CH2.

新!!: C-型小行星和水合 · 查看更多 »

望远镜

望遠鏡是一種可以透過遙控方式收集電磁波(例如可見光)以協助觀察遠方物體的工具。已知能實用的第一架望遠鏡是在17世紀初期在荷蘭使用玻璃透鏡發明的。這項發明現在被應用在陸地和天文學。 在第一架望遠鏡被製造出來幾十年內,用鏡子收集和聚焦光線的反射望遠鏡就被製造出來。在20世紀,許多新型式的望遠鏡被發明,包括1930年代的電波望遠鏡和1960年代的紅外線望遠鏡。望遠鏡這個名詞現在是泛指能夠偵測不同區域的電磁頻譜的各種儀器,在某些情況下還包括其他類型的探測儀器。 英文的「telescope」(來自希臘的τῆλε,tele "far"和 σκοπεῖν,skopein "to look or see";τηλεσκόπος,teleskopos "far-seeing")。這個字是希臘數學家乔瓦尼·德米西亚尼在1611年於伽利略出席的意大利猞猁之眼国家科学院的一場餐會中,推銷他的儀器時提出的。在《星際信使》這本書中,伽利略使用的字是"perspicillum"。.

新!!: C-型小行星和望远镜 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »