徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

分子轨道对称守恒原理

指数 分子轨道对称守恒原理

分子轨道对称守恒原理(伍德沃德-霍夫曼规则),是凭借轨道对称性来判断周环反应产物立体化学性质的一套规则,由罗伯特·伯恩斯·伍德沃德和罗德·霍夫曼于1965年提出。它主要用于分析电环化反应、环加成反应和σ迁移反应,运用前线轨道理论和能级相关理论来分析周环反应,总结出其立体选择性规则,并根据这些规则判断周环反应是否可以进行,以及反应的立体化学特征。 分子轨道对称守恒原理认为:化学反应是分子轨道进行重组的过程。在协同反应中,由原料到产物,分子轨道的对称性始终不变,是守恒的,因为只有这样,才能用最低的能量形成反应中的过渡态。符合分子轨道对称守恒原理的反应途径被称为是“对称性允许”的,不符合该原理的反应途径则被称为是“对称性禁阻”的。用扩展休克尔方法进行的理论计算支持了该原理所进行的预测,但在某些特殊情况(如施加应力)下,得到的产物不符合分子轨道对称守恒原理。.

26 关系: 协同反应反芳香性应用化学 (期刊)分子轨道周环反应前线轨道理论环加成反应环戊二烯离子立体专一性立体化学罗伯特·伯恩斯·伍德沃德罗德·霍夫曼美国化学会志烯丙基电环化反应芳香性負離子过渡态霍夫曼消除反应自由基艾里亚斯·詹姆斯·科里HOMO/LUMO活化能有机化学期刊應力

协同反应

协同反应(Concerted Reaction)是一类键的断裂和形成同时发生的化学反应。这类反应不受溶剂、催化剂等的影响,反应机理既非离子型又非自由基型,而是往往通过一个环状过渡态进行的(有环状过渡态的协同反应又称周环反应),因而反应具有较高的立体选择性。以前人们对此类反应了解甚少,直到1965年伍德沃德与霍夫曼提出分子轨道对称守恒原理,人们对它才有了较充分的认识,并开始能够预言协同反应发生的可能性与立体专一性。 一般常见的协同反应有电环化反应、环加成反应、σ迁移反应。双分子亲核取代反应也被认为是协同反应的一种。.

新!!: 分子轨道对称守恒原理和协同反应 · 查看更多 »

反芳香性

反芳香性是一種化學性質,反芳香化合物有4n个π電子而又具近似平面结构的環狀化合物,如环丁二烯。 反芳香化合物比环状多烯不稳定。.

新!!: 分子轨道对称守恒原理和反芳香性 · 查看更多 »

应用化学 (期刊)

《应用化学》(Angewandte Chemie)是一本涵盖化学所有方面的同行评审科学期刊,每周出版一期。2011年,该刊的影响因子为13.455,它是发表原创研究的化学期刊中影响因子最高的;2013年被被美国化学会志(IF.

新!!: 分子轨道对称守恒原理和应用化学 (期刊) · 查看更多 »

分子轨道

分子軌域(Molecular orbital, MO)是化學中用以描述分子中電子的波動特性的函數。這個函數可以計算出化學和物理性質,例如在任意一個特定區域找到電子的機率。「軌域」一詞由羅伯特·桑德森·馬利肯於1932年提出,為「單電子軌域波函數」(one-electron orbital wave function)的簡稱。從基本層面上來說,它用於描述該函數具有顯著振幅的空間區域。分子軌域通常由分子中的個別原子提供的原子軌域、混成軌域,或者其他原子團的分子軌域結合而成。這些可以由哈特里-福克方程或自洽场方法(SCF)量化計算。 分子軌域可以用來表示分子中佔有該軌域的電子可能出現的區域。分子軌域由原子軌域結合而成,其中原子軌域預測了原子中電子的位置。分子軌域可以具體說明分子的电子排布:一個或一對電子的空間分佈和它(們)的能量。分子軌域通常會以原子軌域線性組合(LCAO-MO法)表示,尤其是在進行定性或近似分析的時候。它們的寶貴之處在於對分子鍵結提供了簡單的模型,使之能透過分子軌域理論了解。現今大多數用於計算化學的方法由計算系統的MO開始。分子軌域描述一個電子在原子核產生的電場中的表現,以及與其他電子的平均分佈。根據包立不相容原理,兩個電子佔據相同軌域時,必須具有相反的自旋。這注定只是一個近似值,能夠高度精準描述的分子電子波函數並沒有軌域(參:組態相互作用方法)。 该概念首先由弗里德里希·洪德和罗伯特·桑德森·马利肯在1927-1928年引入。 电子在分子中的空间运动状态可以用分子轨道波函数(ψ,薛定谔方程的数学解)描述,借助Hartree-Fock方程或自洽场方法可对其作定量近似。 定性上看,分子轨道由原子轨道线性组合(LCAO-MO法)获得,组合后的分子轨道数目与组合前的原子轨道数目相等,經過鍵結與反鍵結的作用後,分子軌域能量高低重新排列。 -->.

新!!: 分子轨道对称守恒原理和分子轨道 · 查看更多 »

周环反应

化学反应中,能形成环状过渡态的协同反应统称为周环反应。协同反应是一种基元反应,其含义是反应过程中,若有两个或两个以上的化学键破裂和形成时,都必须相互协调地在同一步骤内完成。因此,周环反应遵循微观可逆性原理。 周环反应具有如下的特点:.

新!!: 分子轨道对称守恒原理和周环反应 · 查看更多 »

前线轨道理论

前线分子轨道理论(Frontier molecular orbital theory)是分子轨道理论的一种具体应用,阐述HOMO/LUMO(最高占用分子轨道/最低未占分子轨道)对分子特性的影响。该理论最早是由福井謙一于1952年提出的。尽管在最初遭到了批评,但福井謙一因对反应机理的贡献,与羅德·霍夫曼分享了1981年的诺贝尔化学奖。福井謙一的主要贡献在前线分子轨道方面,特别是HOMO和LUMO对反应机理的影响。这些理论能够较好地解释分子轨道对称守恒原理的结论。.

新!!: 分子轨道对称守恒原理和前线轨道理论 · 查看更多 »

环加成反应

环加成反应(英文:Cycloaddition)是两个或多个不饱和化合物(或同一化合物的不同部分)结合生成环状化合物,并伴随有系统总键级数减少的化学反应。它可以是周环反应或非协同的分步反应。逆过程称为环消除反应。 环加成反应的两种主要类型是狄尔斯-阿尔德反应和1,3-偶极环加成反应。 根据前线轨道理论,两个分子之间的环加成反应符合以下几点:.

新!!: 分子轨道对称守恒原理和环加成反应 · 查看更多 »

环戊二烯

环戊二烯(Cyclopentadiene),或称茂,是五个碳的环状二烯烃,分子式为C5H6。环戊二烯室温下为无色液体,具有强烈的刺激性气味,并且通过自身狄尔斯-阿尔德反应迅速聚合生成二聚环戊二烯。二聚环戊二烯加热分解为环戊二烯。不溶于水,易溶于乙醚、苯等溶剂。 环戊二烯可以作为双烯体,与对苯醌等亲双烯体发生狄尔斯-阿尔德反应。 质子核磁共振谱表明,环戊二烯分子内不停发生着氢迁移,使得五个环碳原子是等同的。 同样是出于这个原因,取代环戊二烯在发生DA反应时,通常会得到众多异构体产物的混合物。 环戊二烯基(,又称茂基)的碳有一定的酸性,生成的阴离子有六个π电子,具芳香性。环戊二烯与环戊二烯基负离子可以与金属配位生成金属茂配合物。 一个典型的例子是二茂铁。环戊二烯基(Cyclopentadienyl)简写为Cp。 环戊二烯一般得自炼焦时的副产物粗苯或石油热解时的低沸点部分。.

新!!: 分子轨道对称守恒原理和环戊二烯 · 查看更多 »

离子

離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.

新!!: 分子轨道对称守恒原理和离子 · 查看更多 »

立体专一性

立体专一性(stereospecificity)是一个立体化学术语。当一个反应中,反应物可能生成多种(一般即两种:R构型和S构型)立体异构体产物、但实际只生成其中一种产物时,此反应具有立体专一性。各种SN2反应就是典型的立体专一性反应,比如光延反应等等。 这个概念需要与立体选择性(stereoselectivity)相区别。立体选择性是指,反应机理允许生成两种产物,但有一个为主要产物。所以,立体专一的反应都具有立体选择性,但反之则不亦然。.

新!!: 分子轨道对称守恒原理和立体专一性 · 查看更多 »

立体化学

立体化学(stereochemistry),有机化学的主要内容。研究有机物在三维空间内的结构与变化的化学分支。由于碳以及所有其他元素的化学键往往不是在二维平面上伸展的,于是就产生了相应的异构现象,由此产生了立体化学这门学科。 十九世纪中叶前,人们对有机化合物的认识一直停留在二维空间。随着有机技术和分析技术的发展,大量同分异构体被合成和发现,人们对有机化合物的认识才逐渐深入。当时人们认为二取代甲烷(CH2R2)有两种同分异构体,但是人们始终只能合成得到一种二取代甲烷。直到1874年,年仅22岁的荷兰科学家凡特霍夫提出碳原子成键的新解释。.

新!!: 分子轨道对称守恒原理和立体化学 · 查看更多 »

罗伯特·伯恩斯·伍德沃德

罗伯特·伯恩斯·伍德沃德(Robert Burns Woodward,),美国有机化学家,对现代有机合成做出了相当大的贡献,尤其是在合成和具有复杂结构的天然有机分子结构阐明方面。由於「在有机物合成方面的成就」,伍德沃德榮获1965年诺贝尔化学奖。与其同事罗尔德·霍夫曼共同研究了化学反应的理论问题。后者也获得了1981年的诺贝尔化学奖。.

新!!: 分子轨道对称守恒原理和罗伯特·伯恩斯·伍德沃德 · 查看更多 »

罗德·霍夫曼

罗德·霍夫曼(Roald Hoffmann,),生于波兰第二共和国佐洛乔夫(现属乌克兰),美国化学家,1981年因为通过前线轨道理论和分子轨道对称守恒原理来解释化学反应的发生而获得诺贝尔化学奖。现任教于康奈尔大学。.

新!!: 分子轨道对称守恒原理和罗德·霍夫曼 · 查看更多 »

美国化学会志

《美国化学会志》(Journal of the American Chemical Society,或譯美國化學會期刊、美國化學學會期刊),常用缩写为J.

新!!: 分子轨道对称守恒原理和美国化学会志 · 查看更多 »

烯丙基

丙烯基(Allyl)是丙烯的sp3杂化的碳去掉一个氢后形成的基团。其中与双键碳相邻的碳称为烯丙位。 具有该基团的化合物通常可以进行一些特殊的反应,如丙烯重排,丙烯位氧化反应,Ene反应和Trost不对称丙烯位烷基化反应等。 用NBS可以对烯烃的丙烯位进行溴代。.

新!!: 分子轨道对称守恒原理和烯丙基 · 查看更多 »

电环化反应

电环化反应是周环反应的一类,反应中共轭体系两端的原子环合形成新的σ键,形成比原来分子少一个π键的产物。它的逆反应也属于电环化反应,有时为了区分,将前者成环反应称为“电环合反应”。电环化反应是立体选择性的反应,通常使用的反应底物是环烯烃和对应的共轭烯烃。它于1960年前后被发现。 为了使π电子环合成为σ键,烯烃末端碳原子的键必须旋转,而旋转的方向可以是两个键朝同一方向旋转,或两个键朝不同方向旋转,分别称为顺旋和对旋。顺旋又可分为顺时针顺旋和反时针顺旋两种,对旋又可分为内向对旋和外向对旋两种,但这个因素一般很少考虑。 根据分子轨道对称守恒原理,为了发生电环化反应,共轭烯烃HOMO两端的两个p轨道必须发生同位相的重叠。由于链形烯烃总π电子数会对HOMO的对称性造成影响,加热或光照也会使分子轨道能级图上的电子排布发生改变,因此电环化反应存在以下选择性的规则,可用于预测某一反应的产物: 光照时HOMO一个电子被激发到LUMO上去,使得反应的选择性颠倒,禁阻变为允许,允许变为禁阻。以上规则只表明反应按照协同反应机理进行时的活化能高低,并不排除反应按照其他机理进行。 电环化反应是可逆反应,正逆反应途径是相同的,因此需要注意基态时,反应平衡朝哪一个方向进行更为有利。 苯并环丁烷发生的电环化反应是电环化反应中研究较多的一类。以下图为例,苯并环丁烷加热顺旋开环,生成一个具有类醌结构的不稳定的双烯体。它可以和强亲双烯体(如顺丁烯二酸酐)发生狄尔斯-阿尔德反应生成内型的加合物。苯并环丁烷的开环反应产率因此与取代基R具有很大的关系,例如,在110°C和甲苯作溶剂的条件下,随着R由甲基、异丁基甲基变为三甲基硅基甲基,产率也随着上升。 Nazarov成环反应是二乙烯基酮环化成为环戊烯酮的电环化反应。很多带正电荷或负电荷的共轭烯烃也可以发生电环化反应,比如,环丙烷正离子广义上也属于4n+2体系,因此也可以在加热时发生对旋开环,生成烯烃。 很多看上去张力很大的化合物,在光照条件下,受分子轨道对称性的限制实际上是稳定的。下面的化合物经过电环化反应与四乙酸铅处理,可以得到无取代的杜瓦苯:.

新!!: 分子轨道对称守恒原理和电环化反应 · 查看更多 »

芳香性

芳香性是一種化學性質,有芳香性的分子中,由不饱和键、孤对电子和空轨道组成的共軛系統具有特別的、仅考虑共轭时无法解释的稳定作用。可以将芳香性看作是环状离域和环共振的体现。一般认为在这些体系中的电子,可以自由在由原子组成的环形结构上运动(离域),这些环形结构含有单键和双键相间,离域的结果是环键的键级趋于均化,给予体系稳定作用。 芳香性的理論最初由凱庫勒發展出來,是以六元的苯分子为原型建立起来。理論中的苯有兩個共振形態,並有單键和双键相间,但理论上的两种苯(环己三烯)衍生物的这类异构体在实际上无法检测或分离出来,苯事实上是这两个异构体的“杂化体”,并且具有不考虑电子离域时无法解释的稳定性。.

新!!: 分子轨道对称守恒原理和芳香性 · 查看更多 »

負離子

負離子可能是指:.

新!!: 分子轨道对称守恒原理和負離子 · 查看更多 »

过渡态

-- --是基元反应反应坐标中能量最高的一点所对应的分子构型。处于过渡态的分子也称为活化络合物。理论上,活化络合物是极不稳定的,它向反应物和生成物转化的概率相等;绝对的不可逆反应中,在过渡态这一时刻,所有的碰撞分子都会转化为产物。根据量子力学理论,活化络合物布居为零,过渡态是能量最高的一点,任何扰动都会导致它的改变,故无法分离出来,也是无法观测到的。 过渡态这一概念,对于理解有机反应机理具有很重要的作用。过渡态理论认为,化学反应不是通过反应物分子的简单碰撞就可以完成的,而是在反应物到生成物的过程中,经过了一个高能量的过渡态。这与爬山类似,山的最高点便是过渡态。过渡态是一种不稳定的反应物原子组合体,不可逆反应中,它可以很快地分解为产物。通常反应中间体的能量与过渡态相差不大,两者很难区分。借助于飞秒红外光谱,目前已经可以观测到接近过渡态时的分子构型结构。 Hammond假设认为,反应过渡态的结构与反应的吸放热性质有关,吸热反应中过渡态结构与产物更相似,放热反应则相反。过渡态与中间体能量相差不大时,两者的构型差别很小。 以下是氢氧根离子与溴乙烷发生双分子亲核取代反应中的过渡态示意图。.

新!!: 分子轨道对称守恒原理和过渡态 · 查看更多 »

霍夫曼消除反应

霍夫曼消除反应(Hofmann消去反应、Hofmann消除反应),也称彻底甲基化反应,是胺与过量碘甲烷、氧化银和水共热时(100-200°C),生成三级胺和烯烃的反应。反应中间产物是四级铵碱。 如果以四甲基铵盐作原料,产物是三甲胺和甲醇。虽不严格符合Hofmann反应的定义,但也属于Hofmann反应的范畴。 不对称胺反应时,反应由动力学控制,较少烷基取代的β-碳上的氢由于酸性较强,位阻较小,因此优先被消除,产物主要是不稳定的取代较少的烯烃。这个规则与查依采夫规则相反,称为霍夫曼规则(Hofmann规则)。β-碳上连有苯基、乙烯基、羰基等取代基时,由于共轭和吸电子效应,未取代的β-碳上氢的酸性较弱,因此反应不符合Hofmann规则。连有强吸电子基团的化合物容易按Hofmann规则发生E2消除。 霍夫曼消除可用于合成用其他方法难以合成的烯烃。由于一级、二级和三级胺引入的甲基数目不一样,故也可通过引入的甲基数目,来判断反应物是哪一级的胺。.

新!!: 分子轨道对称守恒原理和霍夫曼消除反应 · 查看更多 »

自由基

自由基(英語:Free Radical),又称游离基,是指化合物的分子在光热等外界条件下,共价键发生均裂而形成的具有不成对电子的原子或基团。在书写时,一般在原子符号或者原子团符号旁边加上一个“·”表示没有成对的电子。如氢自由基(H·,即氢原子)、氯自由基(Cl·,即氯原子)、(OH·),甲基自由基(CH3·)和四甲基哌啶氧自由基等。自由基极易发生反应(如二聚反应、夺氢反应、氧化反应、歧化反应等)。自由基可以是带正电荷,负电荷或者不带电荷。虽然金属以及它们的离子或者它们的络合物有不成对的电子,但按照常规习惯定义不算是自由基。 除了极个别情况, 大多数的未成对电子形成的自由基都具有较高的化学活性。 自由基反应在燃烧、大气化学、聚合反应、等离子体化学、生物化学和其他各种化学学科中扮演很重要的角色。在化学生物学当中,过氧化物和一氧化氮调节着许多生物过程比如控制血管张力。这样的自由基可以作为一种称为氧化还原信号当中的信使。自由基可被溶剂笼包围。.

新!!: 分子轨道对称守恒原理和自由基 · 查看更多 »

艾里亚斯·詹姆斯·科里

艾里亚斯·詹姆斯·科里(Elias James Corey,),美国有机化学家,有机合成化学领域的一代宗师,也是一个备受争议的人物。1990年诺贝尔化学奖得主,得奖原因是“发展了有机合成的理论和方法”,特别是逆合成分析。.

新!!: 分子轨道对称守恒原理和艾里亚斯·詹姆斯·科里 · 查看更多 »

HOMO/LUMO

HOMO和LUMO分别指最高占据分子轨道(Highest Occupied Molecular Orbital)和最低未占分子轨道(Lowest Unoccupied Molecular Orbital)。根据前线轨道理论,两者统称前线轨道。HOMO与LUMO之间的能量差称为「能带隙」,有时可以用来衡量一个分子是否容易被激发:带隙越小,分子越容易被激发。 在有机半导体和量子点中的HOMO与无机半导体中的价带类似,而LUMO则与导带类似。 当分子二聚或高聚时,两个分子的分子轨道之间的相互作用会引起HOMO与LUMO的分裂。当分子相互作用时,每一个能级分裂成彼此能量相距很小的振动能级。当有足够的分子使得这种相互作用足够强烈时(如在高聚物中),这些振动能级的差距变得很小,使得它们的能量几乎可以看成是连续的。这时我们就不再叫它们能级了,而是改称能带。.

新!!: 分子轨道对称守恒原理和HOMO/LUMO · 查看更多 »

活化能

活化能(Activation energy)是一个化学名词,又被称为阈能。这一名词是由阿瑞尼士在1889年引入,用来定义一个化学反应的发生所需要克服的能量障碍。活化能可以用于表示一个化学反应发生所需要的最小能量,因此活化能越高,反应越难进行。反应的活化能通常表示为Ea,单位是千焦耳每摩尔(kJ/mol)。 活化能基本上是表示势垒(有时称为能垒)的高度。.

新!!: 分子轨道对称守恒原理和活化能 · 查看更多 »

有机化学期刊

《有机化学期刊》(the Journal of Organic Chemistry,常缩写为 J. Org.

新!!: 分子轨道对称守恒原理和有机化学期刊 · 查看更多 »

應力

在連續介質力學裏,應力定義為單位面積所承受的作用力。以公式標記為 其中,\sigma \,表示應力;\Delta F_j\,表示在j\,方向的施力;\Delta A_i \,表示在i\,方向的受力面積。 假設受力表面與施力方向正交,則稱此應力分量為正向應力(normal stress),如圖1所示的\sigma_\,、\sigma_\,、\sigma_\,,都是正向應力;假設受力表面與施力方向互相平行,則稱此應力分量為剪應力(shear stress),如圖1所示的\sigma_\,、\sigma_\,、\sigma_\,、\sigma_\,、\sigma_\,、\sigma_\,,都是剪應力。 「內應力」指組成單一構造的不同材質之間,因材質差異而導致變形方式的不同,繼而產生的各種應力。 採用國際單位制,应力的单位是帕斯卡(Pa),等於1牛頓/平方公尺。應力的單位與壓強的單位相同。兩種物理量都是單位面積的作用力的度量。通常,在工程學裏,使用的單位是megapascals(MPa)或gigapascals(GPa)。採用英制單位,應力的單位是磅力/平方英寸(psi)或千磅力/平方英寸(ksi)。.

新!!: 分子轨道对称守恒原理和應力 · 查看更多 »

重定向到这里:

Woodward-Hoffmann规则伍德沃德-霍夫曼规则分子轨道对称性守恒原理

传出传入
嘿!我们在Facebook上吧! »