徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

T1空间

指数 T1空间

在拓扑学和相关的数学分支中,T1 空间和 R0 空间是特定种类的拓扑空间。T1 和 R0 性质是分离公理的个例。.

35 关系: 基 (拓撲學)偶数多項式完备空间完全不连通空间对称关系一致空间交集代数簇开集分离公理分离集合图册 (拓扑学)离散空间等价关系紧空间特殊化预序餘有限空間豪斯多夫空间超滤子连通空间闭包闭集邻域柯爾莫果洛夫空間极限点泛函分析有限集合无限集合数学整数扎里斯基拓扑拓扑学拓扑不可区分性拓扑空间

基 (拓撲學)

在數學中,帶有拓撲 T 的拓撲空間 X 的基(base 或 basis) B 是 T 中開集的搜集,使得 T 中的所有開集可以被寫為 B 的元素的并集。我們稱基“生成”了拓撲 T。基是有用的因為拓撲的很多性質,可以被簡約為生成該拓撲的基的陳述,并且因為許多拓撲最容易依據生成它們的基來定義。.

新!!: T1空间和基 (拓撲學) · 查看更多 »

偶数

#重定向 奇偶性 (数学).

新!!: T1空间和偶数 · 查看更多 »

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

新!!: T1空间和多項式 · 查看更多 »

完备空间

完备空间或者完备度量空间是具有下述性质的空间:空间中的任何柯西序列都收敛在该空间之内。.

新!!: T1空间和完备空间 · 查看更多 »

完全不连通空间

在拓扑学和相关的数学分支中,完全不连通空间是没有非平凡连通子集的拓扑空间。在所有拓扑空间中空集和单点集合是连通的,而在完全不连通空间中它们是仅有的连通子集,在此意义上,完全不连通空间是极大不连通。 完全不连通空间的重要例子是康托尔集合。另一个例子是在代数数论中扮演关键角色的p进数的域 Qp。.

新!!: T1空间和完全不连通空间 · 查看更多 »

对称关系

数学上,若對所有的 a 和 b 屬於 X,下述語句保持有效,則集合 X 上的二元关系 R 是对称的:「若 a 关系到 b,则 b 关系到 a。」 数学上表示为: 例如:“和……结婚”是对称关系;“小于”不是对称关系。 注意,对称关系不是反对称关系(aRb 且 bRa 得到 b.

新!!: T1空间和对称关系 · 查看更多 »

一致空间

在拓扑学這個數學領域裡,一致空间(uniform space)是指带有一致结构的集合。一致空间是一個拓撲空間,有可以用来定义如完备性、一致连续及一致收敛等一致性質的附加结构。 一致结构和拓扑结构之间的概念区别在於,一致空间可以形式化有关于相对邻近性及点间临近性等特定概念。换句话说,「x 邻近于a 胜过y 邻近于b」之類的概念,在一致空间中是有意义的。而相对的,在一般拓扑空间内,给定集合A 和B,有意义的概念只有:点x 能“任意邻近”A(亦即在A 的闭包內);或是和B相比,A 是x 的“較小邻域”,但点间邻近性和相对邻近性就不能只用拓扑结构來描述了。 一致空间广義化了度量空间和拓扑群,因此成為多数数学分析的根基。.

新!!: T1空间和一致空间 · 查看更多 »

交集

数学上,两个集合A和B的交集是含有所有既属于A又属于B的元素,而没有其他元素的集合。.

新!!: T1空间和交集 · 查看更多 »

代数簇

代数簇,亦作代數多樣體,是代数几何学上多项式集合的公共零点解的集合。代数簇是经典(某种程度上也是现代)代数几何的中心研究对象。 術語簇(variety)取自拉丁语族中詞源(cognate of word)的概念,有基於“同源”而“變形”之意。 历史上,代数基本定理建立了代数和几何之间的一个联系,它表明在复数域上的单变量的多项式由它的根的集合决定,而根集合是内在的几何对象。在此基础上,希尔伯特零点定理提供了多项式环的理想和仿射空间子集的基本对应。利用零点定理和相关结果,我们能够用代数术语捕捉簇的几何概念,也能够用几何来承载环论中的问题。.

新!!: T1空间和代数簇 · 查看更多 »

开集

開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).

新!!: T1空间和开集 · 查看更多 »

分离公理

在拓扑学及相关的数学领域裡,通常对于所讨论的拓扑空间加有各种各样的限制条件,分离公理即是指之中的某些限制條件。这些分离公理有时候被叫做吉洪诺夫分离公理,得名于安德烈·尼古拉耶维奇·吉洪諾夫。部分分離公理以字母T開頭,是由德文单词“Trennung”而來,意義是分离。 分離公理之所以稱為公理,是因為以前定義拓撲空間時,有些人會將其也做為公理來定義,而得出較現在意思狹義的拓撲空間。但在拓撲空間的公理化完成後,那些都成了「各種」的拓撲空間。然而,「分離公理」這一詞就這樣固定了下來。.

新!!: T1空间和分离公理 · 查看更多 »

分离集合

在拓扑学和有关的数学分支中,分离集合是给定拓扑空间中以特定方式相互关联的一对子集,粗略的說,既不重疊也不接觸。两个集合是否分离对于连通空间和拓扑空间的分离公理的概念都很重要。 分离集合不应该與分离空间混淆,它们有些关系但並不相同。而可分离空间則是完全不同的拓扑概念。.

新!!: T1空间和分离集合 · 查看更多 »

图册 (拓扑学)

在数学,特别是在拓扑中,一个图册(atlas)描述了一个流形如何装备一个微分结构。每一小块由一个卡(chart)给出(也称为坐标卡coordinate chart或局部坐标系local coordinate system))。以圖冊來定義流形的概念是由夏尔·埃雷斯曼於1943年所提出。 在给出图册形式定义之前,我们回忆起流形M上一个卡定义为从M的一个开集U到\mathbb^n中开集V的一个同胚映射\phi。如果(U_, \varphi_)与(U_, \varphi_)是M的两个卡使得U_ \cap U_非空,则定义了转移映射(transition map) 注意到因为\varphi_与\varphi_都是同胚,转移映射也是同胚。所以,转移映射已经赋予了某种相容性,使得从一个卡上的坐标系变到另一个卡上的坐标系是连续的。 那么流形M上一个图册是一族M上的卡\mathcal.

新!!: T1空间和图册 (拓扑学) · 查看更多 »

离散空间

在拓扑学和相关数学领域中,离散空间是特别简单的一种拓扑空间,在其中点都在特定意义下是相互孤立的。.

新!!: T1空间和离散空间 · 查看更多 »

等价关系

等價關係(equivalence relation)即设R是某個集合A上的一个二元关系。若R满足以下條件:.

新!!: T1空间和等价关系 · 查看更多 »

紧空间

在数学中,如果欧几里得空间Rn的子集是闭合的并且是有界的,那么称它是--的。例如,在R中,闭合单位区间是紧致的,但整数集合Z不是(它不是有界的),半开区间.

新!!: T1空间和紧空间 · 查看更多 »

特殊化预序

在数学分支拓扑学中,特殊化(或规范)预序是在拓扑空间上的自然预序。对在实践中考虑的大多数空间,特别是满足T0 分离公理的那些空间,这个预序甚至是偏序(叫做特殊化序)。在另一方面,对于T1空间这个次序成为平凡的而没有价值。 特殊化序经常在计算机科学应用中考虑,这里的T0空间出现在指称语义中。特殊化序对于识别在偏序集合上合适的拓扑空间是重要的,这在序理论所要做的。.

新!!: T1空间和特殊化预序 · 查看更多 »

餘有限空間

若一個集X的子集Y,使得差集X-Y為有限集,則稱Y為X的餘有限集(cofinite)。 類似地,若一個集X的子集Y,使得差集X-Y為可數集,則稱Y為餘可數集(cocountable)。 餘有限拓撲是將集內所有餘有限集定義為開集的拓撲,這樣的拓撲空間稱為餘有限空間。其性質有:.

新!!: T1空间和餘有限空間 · 查看更多 »

豪斯多夫空间

在拓扑学和相关的数学分支中,豪斯多夫空间、分离空间或T2空间是其中的点都“由邻域分离”的拓扑空间。在众多可施加在拓扑空间上的分离公理中,“豪斯多夫条件”是最常使用和讨论的。它蕴涵了序列、网和滤子的极限的唯一性。直观地讲,这个条件可用个双关语来形容:如果某空间中任两点可用开集合将彼此“豪斯多夫”开来,该空间就是“豪斯多夫”的。 豪斯多夫得名于拓扑学的创立者之一费利克斯·豪斯多夫。豪斯多夫最初的拓扑空间定义把豪斯多夫条件包括为公理。.

新!!: T1空间和豪斯多夫空间 · 查看更多 »

超滤子

在数学领域集合论中,在集合 X 上的超滤子是作为极大滤子的 X 子集的搜集。超滤子可以被认为是有限可加性测度。那么 X 的所有子集要么被认为是“几乎所有”(有测度 1)要么被认为是“几乎没有”(有测度 0)。如果 A 是 X 的子集,则要么 A 要么 X\A 是超滤子的元素(这里 X\A 是 A 在 X 中的相对补集;就是说,X 的不在 A 中的所有元素的集合)。这个概念可以被推广到布尔代数甚至是一般偏序,并在集合论、模型论和拓扑学中有很多应用。.

新!!: T1空间和超滤子 · 查看更多 »

连通空间

拓扑空间X称为是连通的。当且仅当以下叙述之一成立:.

新!!: T1空间和连通空间 · 查看更多 »

闭包

闭包可以指:.

新!!: T1空间和闭包 · 查看更多 »

闭集

在拓扑空间中,闭集是指其补集为开集的集合。在一个拓扑空间内,闭集可以定义为一个包含所有其极限点的集合。在完备度量空间中,一个闭集的极限运算是闭合的。.

新!!: T1空间和闭集 · 查看更多 »

邻域

在集合论中,邻域指以点 a 为中心的任何开区间,记作:U(a)。 在拓扑学和相关的数学领域中,邻域是拓扑空间中的基本概念。直觉上说,一个点的邻域是包含这个点的集合,並且該性質是外延的:你可以稍微“抖动”一下这个点而不离开这个集合。 这个概念密切关联于开集和内部的概念。.

新!!: T1空间和邻域 · 查看更多 »

柯爾莫果洛夫空間

在拓扑学和相关的数学分支中,T0空間,又稱柯爾莫哥洛夫空間,以數學家安德雷·柯爾莫哥洛夫命名,形成了一类广泛的表现良好的拓扑空间。T0 条件是分离公理之一。.

新!!: T1空间和柯爾莫果洛夫空間 · 查看更多 »

极限点

在数学中,非正式的说在拓扑空间 X 中的一个集合 S 的极限点(limit point),就是可以被 S 中的点(不包含 x 本身)随意“逼近”的點。这个概念有益的推广了极限的概念,并且是諸如闭集和拓扑闭包等概念的基础。实际上,一个集合是闭合的当且仅当他包含所有它的极限点,而拓扑闭包运算可以被认为是通过增加它的极限点来扩充一个集合。 一个有关的概念是序列的聚集点(cluster point)或会聚点(accumulation point)。.

新!!: T1空间和极限点 · 查看更多 »

泛函分析

泛函分析(Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。 使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家維多·沃爾泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家进一步发展。.

新!!: T1空间和泛函分析 · 查看更多 »

有限集合

数学中,一个集合被称为有限集合,簡單來說就是元素個數有限,嚴格而言則是指有一个自然数n使该集合与集合之间存在双射。例如 -15到3之间的整数组成的集合,这个集合有19个元素,它跟集合存在雙射,所以它是有限的。不是有限的集合称为无限集合。 也就是说如果一个集合的基数是自然数,那这个集合就是有限的。所有的有限集合都是可数的,但并不是所有的可数集都是有限的,例如所有素数的集合。 有一个定理(戴德金定理)是:一个集合是有限的当且仅当不存在一个该集合与它的任何一个真子集之间的双射。 I I.

新!!: T1空间和有限集合 · 查看更多 »

无限集合

无限集合是由无限个元素组成的集合,也称无穷集合。集合論中,集合主要分為有限集合與無限集合,有限集合很多的性質也是顯而易見的,反之,因為無限集合的非有限性,即使無限集合的一些基本性質也變得並不顯而易見,個別的數學家甚至質疑諸如选择公理等基本公設使用在無限集合身上是否仍然正確。罗素悖论提出以後,一些激進的數學哲學家提倡禁止在數學中使用無限集合以挽救第三次數學危機。 無限集合在數學中無處不在,一般常見的例子有整數集、有理集等。一般來說,無限集合還分為可數集和不可數集。.

新!!: T1空间和无限集合 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: T1空间和数学 · 查看更多 »

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

新!!: T1空间和整数 · 查看更多 »

扎里斯基拓扑

在代数几何和交换代数中,扎里斯基拓扑是定義在代数簇上的拓扑。其由奥斯卡·扎里斯基首先提出,及後用作給出一般交换环的素理想集的拓撲結構,稱為環的谱。 有了扎里斯基拓扑,無論一個代數簇的基域是否一個拓撲域(即一個域,其上可定義一個拓撲,使得加法和乘法都是連續函數),都可應用拓扑学的工具到代数簇的研究上。这是概形论的基本思想,有了它才允许將多個仿射簇黏合,而成一個一般的代數簇,正如流形理论中,流形由多個坐标卡(實仿射空间的開集)黏合而成一樣。 將一個代數簇的代數子集定義為閉集,就得到該代數簇的扎里斯基拓扑。若該代數簇定義在复数上,則扎里斯基拓扑比通常的拓扑结构更粗糙,因为每一个代数集在通常的拓撲中也都是闭集。 扎里斯基拓撲在交換環的素理想集上的推廣可從希尔伯特零点定理得到,因為該定理說,代數閉域上的仿射簇的點,與該仿射簇的坐標環的极大理想一一對應。因此可如下定義一個交換環的極大理想集上的扎里斯基拓撲:若干極大理想的集合是閉集,當且僅當該些極大理想就是包含某一理想的所有極大理想。格罗滕迪克的概形論中還有另一個基本思想,就是不單考慮對應某個極大理想的點,還要考慮任意(不可約的)代數簇,即對應素理想的點。 所以交換環的素理想集(稱為「譜」)上的扎里斯基拓撲滿足:若干素理想的集合為閉集,當且僅當該些素理想就是包含某一理想的所有素理想。.

新!!: T1空间和扎里斯基拓扑 · 查看更多 »

拓扑学

在數學裡,拓撲學(topology),或意譯為位相幾何學,是一門研究拓撲空間的學科,主要研究空間內,在連續變化(如拉伸或彎曲,但不包括撕開或黏合)下維持不變的性質。在拓撲學裡,重要的拓撲性質包括連通性與緊緻性。 拓撲學是由幾何學與集合論裡發展出來的學科,研究空間、維度與變換等概念。這些詞彙的來源可追溯至哥特佛萊德·萊布尼茲,他在17世紀提出「位置的幾何學」(geometria situs)和「位相分析」(analysis situs)的說法。莱昂哈德·歐拉的柯尼斯堡七橋問題與歐拉示性數被認為是該領域最初的定理。「拓撲學」一詞由利斯廷於19世紀提出,雖然直到20世紀初,拓撲空間的概念才開始發展起來。到了20世紀中葉,拓撲學已成為數學的一大分支。 拓撲學有許多子領域:.

新!!: T1空间和拓扑学 · 查看更多 »

拓扑不可区分性

在拓扑学中,拓扑空间X內的两点若有完全相同的鄰域,便稱這兩個點為「拓扑不可区分的」。亦即,設x及y為X內的兩點,A為由所有包含x的鄰域所組成的集合,且B為由所有包含y的鄰域所組成的集合,則x及y為「拓撲不可區分的」若且唯若A.

新!!: T1空间和拓扑不可区分性 · 查看更多 »

拓扑空间

拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.

新!!: T1空间和拓扑空间 · 查看更多 »

重定向到这里:

R0空间T1 空間T1空間对称拓扑

传出传入
嘿!我们在Facebook上吧! »