徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

RNA世界學說

指数 RNA世界學說

RNA世界學說(英語:RNA world hypothesis)是一個理論,認為地球上早期的生命分子以RNA先出現,之後才有蛋白质和DNA。且這些早期的RNA分子同時擁有如同DNA的遺傳訊息儲存功能,以及如蛋白質般的催化能力Cech, T.R. (2011).

62 关系: A-DNA埃格斯特朗假说卡尔·乌斯古菌夏因-达尔加诺序列对映异构尿嘧啶亚历山大·里奇二級結構代謝產物弗朗西斯·克里克圣捷尔吉·阿尔伯特地球地质年代嘌呤催化傑拉德·喬伊斯前体磷酸二酯鍵米勒-尤里实验纽约时报羟基美国国家科学院院刊終止子病毒生命生命起源遗传学诺贝尔奖诺贝尔生理学或医学奖得主列表麻省理工学院辅因子胞嘧啶蘇糖核酸肽键肽核酸脱氧核糖核酸自催化反应自我复制腺嘌呤蛋白质GNARNA聚合酶RRNATRNA核糖核糖体核糖体蛋白质...核糖核酸核酶核酸核苷酸氨基酸氰化氢沃特·吉爾伯特泛種論活化石活性位点新科學人手性 扩展索引 (12 更多) »

A-DNA

A-DNA又稱A型DNA,為DNA雙股螺旋的一種形式,擁有與較普遍的B-DNA相似的右旋結構,但其螺旋較短較緊密。A-DNA是三種具有生物活性的DNA雙螺旋結構,另兩種則為B-DNA及Z-DNA。一般只有脫水的DNA樣本中才會出現,可用來作晶體學實驗。此外當DNA與RNA混合配對時,也可能出現A-DNA形式的螺旋。.

新!!: RNA世界學說和A-DNA · 查看更多 »

埃格斯特朗

埃格斯特朗(Ångström, 简称埃,符号Å)是一个长度计量单位。它不是国际制单位,但是可与国际制单位进行换算,即1 Å.

新!!: RNA世界學說和埃格斯特朗 · 查看更多 »

假说

假说(Hypothesis),即指按照预先设定,对某种现象进行的解释,即根据已知的科学事实和科学原理,对所研究的自然现象及其规律性提出的推测和说明,而且數據經過詳細的分類、歸納與分析,得到一個暫時性但是可以被接受的解釋。任何一种科学理论在未得到实验确证之前表现为假设学说或假说。 有的假设还没有完全被科学方法所证明,也没有被任何一种科学方法所否定,但能够产生深远的影响。如1900年德国物理学家马克斯·普朗克为解决黑体辐射谱而首先提出量子论(量子假说),1913年丹麦物理学家尼尔斯·玻尔提出的玻尔原子理论大大推进了现代物理学发展进程。.

新!!: RNA世界學說和假说 · 查看更多 »

卡尔·乌斯

卡尔·理查德·乌斯(Carl Richard Woese,),生于纽约州锡拉丘兹,美国微生物学家和生物物理学家。乌斯因在1977年由对16S 核糖体RNA系统发生分類學分析定义了古菌(生物的一个新的域)而知名,这个由乌斯开创的16S 核糖体RNA技术彻底改变了微生物学的学科。他还是RNA世界学说的创始人,虽然当时该理论还不叫那个名字。 乌斯在伊利诺伊大学厄巴纳-香槟分校担任斯主席,和微生物学教授。.

新!!: RNA世界學說和卡尔·乌斯 · 查看更多 »

古菌

古菌(Archaea,来自,意为“古代的东西”)又稱古細菌、古生菌或太古生物、古核生物,是单细胞微生物,构成生物分类的一个域,或一个界。这些微生物属于原核生物,它們與细菌有很多相似之處,即它们没有细胞核与任何其他膜结合细胞器,同時另一些特徵相似於真核生物,比如存在重复序列与核小体。 过去曾经将古菌和细菌一同归为原核生物,并将其命名为“古细菌”,但这种分类方式已过时。事实上古菌有其独特的进化历程,并与其它生命形式有显著的生化差异,所以现在将其列为三域系统中的一个域。在这个系统中,古菌、细菌与真核生物各为一个域,并进一步划分为界与门。到目前为止,古菌已被划分为公认的四个门,随着进一步研究,还可能建立更多的门类。在这些类群中,研究最深入的是泉古菌门与广古菌门。但对古菌进行分类仍然是困难的,因为绝大多数的古菌都无法在实验室中纯化培养,只能通过环境宏基因组检测来分析。 古菌和细菌的大小和形状非常相似,但少数古菌有不寻常的形状,如嗜鹽古菌拥有平面正方形的细胞。尽管看起来与细菌更相似,但古菌与真核生物的亲缘关系更为密切,特别是在一些代谢途径(如转录和转译)有关酶的相似性上。古菌还有一些性状是独一无二的,比如由依赖醚键构成的细胞膜。与真核生物相比,古菌有更多的能量来源,从熟悉的有机物糖类到氨到金属离子直到氢气。(如)可以以太阳光为能源,其它一些种类的古菌能进行;但不像蓝藻与植物,没有一种古菌能同时做到这两者而进行光合作用。古菌通过分裂、出芽、断裂来进行无性生殖,但没有发现能产生孢子的种类。 一开始,古菌被认为都是一些生活在温泉、盐湖之类极端环境的嗜极生物,但近来发现它们的栖息地其实十分广泛,从土壤、海洋、到河流湿地。它们也被发现在人类的大肠、口腔、与皮肤。尤其是在海洋中古菌特别多,一些浮游生物中的古菌可能是这个星球上数量最大的生物群体。现在,古菌被认为是地球生命的一个重要组成部分,在碳循环和氮循环中可能扮演重要的角色。目前没有已知的作为病原体或寄生虫的古菌,他们往往是偏利共生或互利共生。一个例子是,生活在人和反刍动物的肠道中帮助消化,还被用于沼气生产和污水处理。嗜极生物古菌中的酶能承受高温和有机溶剂,在被生物技术所利用。.

新!!: RNA世界學說和古菌 · 查看更多 »

夏因-达尔加诺序列

夏因-达尔加诺序列(Shine-Dalgarno sequence,常简称为SD序列)是由澳大利亚科学家约翰·夏因与琳·达尔加诺所提出的一个存在于信使RNA上的核糖体结合位点,通常位于起始密码子AUG的上游的八个碱基对处。夏因-达尔加诺序列只存在于原核生物中。六个碱基的共有序列是AGGAGG;例如,在大肠杆菌中,这个序列为AGGAGGU。该序列帮助动员核糖体结合到信使RNA上并将其校准到起始密码子上以启动蛋白质生物合成。该序列的互补序列(CCUCCU)被称为反夏因-达尔加诺序列,它位于核糖体中16S 核糖体RNA的3'端:以大肠杆菌为例,反夏因-达尔加诺序列位于其16S核糖体RNA的第1534~1540号核苷酸左右处。真核生物中与夏因-达尔加诺序列相等价的序列被称为科扎克共有序列。.

新!!: RNA世界學說和夏因-达尔加诺序列 · 查看更多 »

对映异构

對映異構體(Enantiomer),又稱對掌異構物、光學異構物、鏡像異構物或对映异构体或旋光异构体,不能與彼此立體異構體鏡像完全重疊。 互為鏡像(mirror images)的分子。不对称碳原子和四種不同的原子或原子基團連結,不對稱碳為手性中心。當有n個手性中心時,則最多有2的n次方立體異構物。 來源於希臘文,具有左手對右手那樣鏡像關係的一對物質。無論怎樣擺佈都不能使這些鏡像成為同一物。有對稱平面的物質不能是對映體,因為它和它的鏡像是等同的。乳酸那樣的分子對映體,除了與其他不對稱分子的化學反應以及與偏振光作用外,具有完全相同的化學物質。對映體在結晶學中很重要,因為許多晶體是由單個分子的右手型和左手型交替排列的。對晶體的完整描述,就是要說明這些型體彼此間是如何混合的。兩種光學活性的酒石酸,即所謂d-酒石酸和l-酒石酸就是一對對映體的實例。.

新!!: RNA世界學說和对映异构 · 查看更多 »

尿嘧啶

-- -- -- 尿嘧啶(Uracil,简写U),是組成RNA的四种鹼基之一。在DNA的轉錄時取代 DNA 中的胸腺嘧啶,與腺嘌呤配對。将尿嘧啶甲基化即得胸腺嘧啶 (T)。.

新!!: RNA世界學說和尿嘧啶 · 查看更多 »

亚历山大·里奇

亚历山大·里奇(Alexander Rich,),美国生物学家和生物物理学家。自1958年起,他在麻省理工学院和哈佛医学院担任生物物理学的教授。.

新!!: RNA世界學說和亚历山大·里奇 · 查看更多 »

二級結構

蛋白質二級結構(Protein secondary structure)在生物化學及結構生物學中,是指一個生物大分子,如蛋白質及核酸(DNA或RNA),局部區段的三維通式。然而它並不描述任何特定的原子位置(在三級結構中描述)。 二級結構是由生物大分子在原子分辨率結構中所观察到的氫鍵來定義的。蛋白質的二級結構通常是以主鏈中氨基之間的氫鍵模式來定義〈与主链-侧链间以及侧链-侧链间的氢键无关〉,亦即DSSP的定義。而核酸的二級結構是以鹼基之間的氫鍵來定義。 在二级结构中,特定的氫鍵模式往往伴随着其他一些結構特徵;但如果只考虑这些结构特征而忽略氢键本身,则会导致所定義的二級結構不准确。例如,蛋白質的螺旋中的残基都分布在拉氏图(以主鏈二面角为坐标)的特定區域,因此二面角位于这一区域的残基都會被认为参与形成「螺旋」,而不論它是否真正的存在对应氫鍵。其他稍微不准确的定義多是應用曲線微分幾何的觀念,如曲率及扭量。也有一些結構生物學家以肉眼观察通过软件显示的蛋白质结构來決定其二級結構。 對生物大分子的二級結構含量可以以光譜來初步估計。對於蛋白質,最常用的方法是圓二色性(Circular dichroism), (利用長紫外線,波長范围170-250nm)。在获得的光谱吸收曲线上,α螺旋結構会在208nm及222nm两处同时出现极小值,而204nm和207nm处出现单个极小值則分別表示存在无规卷曲和β折疊結構。另一個較常用的方法是紅外光譜,它可以偵測因氫鍵所造成胺基的震盪。而光譜中,测定二級結構最準確的方法是利用核磁共振光谱所纪录的化學位移,由于仪器和样品制备上的原因,这一方法较为少用。.

新!!: RNA世界學說和二級結構 · 查看更多 »

代謝產物

代謝產物 (Metabolite),又稱代謝物是代謝的中間或最後產物,這個詞彙是通常指的是。他們有諸如作為燃料、結構、訊號、刺激、抑止酵素(通常作為酵素的輔因子)、防衛或作用在其他有機分子上(如:色素、氣味分子或費洛蒙)。在一般成長,發育以及繁殖的階段,就有初級代謝產物的參與。工業中被大量製造的乙烯,就是初級代謝產物中的87。而次級代謝產物則不會接參與那些過程,但它們在生理功能上具有重要的意義。它們囊括了抗生素和色素,像是樹脂和松烯。放線菌素就是一種次級代謝產物,它們是從一級代謝產物的色胺酸轉變而來的,但不是所有的抗生素都會把一級代謝產物當前體來使用。在代謝途徑中,醣類中的葡萄糖和果糖就屬於代謝產物。 分子生物工業中生產的初級代謝產的例子 來自一處的酶化学反应的输出成為另一些化学反应的输入,這樣環環相扣而成的代谢物组(Metabolome)會形成一個龐大的代謝網絡。 在生物體本生的或來自藥物的合成物,形成代謝產物後,會成為降解與消除反應的自然的生物化学过程的一部分。化合物本身的降解速率,決定它存在的長短及影響強弱。分析醫藥產品的代謝過程,藥物代謝,在藥物尋找的重要方法,並增進對藥物副作用的暸解。.

新!!: RNA世界學說和代謝產物 · 查看更多 »

弗朗西斯·克里克

弗朗西斯·哈利·康普頓·克立克,OM,FRS(Francis Harry Compton Crick,),英国生物学家、物理学家及神经科学家。他最重要的成就是1953年在剑桥大学卡文迪许实验室与詹姆斯·沃森共同发现了脱氧核糖核酸(DNA)的双螺旋结构,二人也因此与莫里斯·威尔金斯共同获得了1962年诺贝尔生理及医学奖,獲獎原因是「發現核酸的分子結構及其對生物中信息傳遞的重要性」 。克里克在2004年因大腸癌病逝於美國加州。他的同事克里斯多福·科赫,曾感叹道:“他临死前还在修改一篇论文;他至死仍是一名科学家”。.

新!!: RNA世界學說和弗朗西斯·克里克 · 查看更多 »

圣捷尔吉·阿尔伯特

#重定向 阿尔伯特·圣捷尔吉.

新!!: RNA世界學說和圣捷尔吉·阿尔伯特 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

新!!: RNA世界學說和地球 · 查看更多 »

地质年代

地質年代是用來描述地球歷史事件的時間單位,通常在地質學和考古學中使用。.

新!!: RNA世界學說和地质年代 · 查看更多 »

嘌呤

嘌呤(,大陆:piào lìng,台湾:「飄齡」,英語:Purine),又稱普林,是新陈代谢過程中的一種代謝物。它是一种带有四个氮原子的杂环芳香有机化合物,嘌呤和嘧啶是核酸中最重要的组成部分。 如果身體未能將嘌呤進一步代謝并從腎臟中經尿液排出的話,而這些物質最終形成尿酸,再經血液流向軟組織,以結晶體積存於其中,假若有誘因引起沉積在軟組織如關節膜或肌腱裡的尿酸結晶釋出,那便導致身體免疫系統過度反應(敏感)而造成炎症(痛風症)。.

新!!: RNA世界學說和嘌呤 · 查看更多 »

催化

催化是利用催化剂改变化学反应速度的一种工艺。许多化学工业要利用催化作用来获得需要的反应速度。催化也是一种化工单元过程,催化剂本身在反应中不会被消耗,但催化剂会改变反应速度,一催化劑亦可能參與複數的催化反應。正催化劑可加速反應;負催化劑或抑制劑則會與反應物反應進而降低化學反應。可提高催化劑活性的物質稱為促進劑;降低催化劑活性者則稱為催化毒。 相較於未催化的反應,同溫度的催化反應擁有較低的活化能。催化劑可以藉由結合反應物達到極化的效果,如酸催化劑之於羰基化合物的合成;催化劑也可產生非自然的反應中間物,如以四氧化鋨催化烯烴的雙羥基化中產生的鋨酸鹽酯;催化劑亦可造成反應物的裂解,如製氫時產生的單原子氫。 很多物质都可以做催化剂,在无机物反应中,通常利用酸、碱、金属或金属化合物作为催化剂,在有机物反应中多用有性的蛋白质分子——酶作为催化剂,生物体内许多化学反应都依赖酶來进行的。 催化反应可以发生在单相和多相中,也可以发生在复相中:.

新!!: RNA世界學說和催化 · 查看更多 »

傑拉德·喬伊斯

傑拉德·法蘭西斯·「杰瑞」·喬伊斯 (Gerald Francis "Jerry" Joyce,),是任職於沙克研究所的生物學教授和研究人员,並在諾華公司研究基金會遺傳學研究所擔任主任。 他最出名的是他在體外培養技術上的革命性進展。他發現第一個DNA去氫酶(deoxyribozyme)並用於開發第一個自我複製的RNA酶 和其他用於了解生命起源的研究工作。 1978年,喬伊斯在芝加哥大学取得藝術學士。1984年,在聖地牙哥加利福尼亞大學,完成了他的醫學學位和哲學博士。 1985年至1989年,他在索尔克研究所擔任博士後研究員和高级研究顧問,1989年加入斯克里普斯研究所。 2001年,喬伊斯成為美國國家科學院院士,分別在美國文理科學院(2011年)和 美國國家學院醫學研究所 (2014年)任職。2016年起,他在斯克里普斯研究所擔任教授,2006年到2011年,他在斯克里普斯研究所擔任學院院長,期间,他協助在佛罗里达州木星市,設立第二校區。另外喬伊斯自1996年就擔任科學諮詢委員會的主席。 2005年,喬伊斯獲得由國際生命之源研究社群(the International Society for the Study of the Origin of Life, ISSOL)所頒發的尤里獎。2009年, 喬伊斯的實驗室成為世界上第一個,能夠在體外製造出具備自我複製、指數成長且持續進化的RNA酶。.

新!!: RNA世界學說和傑拉德·喬伊斯 · 查看更多 »

前体

在化学领域,前体是一种可以参与化学反应的化学物质,其反应结果是生成另一种化学物质。一个简单的例子是,甲烷可称作一氯甲烷的前体。在生物化学领域,“前体”这一名词,更为特别的应用于描述代谢途径的物质转化。例如,在糖酵解过程中,葡萄糖可称作葡萄糖-6-磷酸的前体。.

新!!: RNA世界學說和前体 · 查看更多 »

磷酸二酯鍵

磷酸二酯鍵(phosphodiester bond)也称为“3',5'-磷酸二酯键”或“磷酸双酯键”,是核酸分子中的磷酸基团的磷原子與另外兩個五碳糖分子的碳原子之間形成的共價鍵。這種形式的鍵結於DNA及RNA分子中負責將分別位於兩個核糖上的3號碳與5號碳連結起來。.

新!!: RNA世界學說和磷酸二酯鍵 · 查看更多 »

米勒-尤里实验

米勒-尤里實驗(Miller-Urey experiment)是一項模擬假設性早期地球環境的實驗,研究目的是測試化學演化的發生情況。尤其是針對亞歷山大·歐帕林(Alexander Oparin)與约翰·伯顿·桑驗,該學說認為早期地球環境使無機物合成有機化合物的反應較易發生。 米勒-尤里實驗是關於生命起源的經典實驗之一,由芝加哥大學的史丹利·米勒與哈羅德·尤里於1953年主導完成,其結果以《在可能的早期地球環境下之胺基酸生成》(A Production of Amino Acids Under Possible Primitive Earth Conditions)為題發表。米勒实验对后来探索前生物分子的非生物合成具有相当大的启发性,至今依然是教科书中关于生命起源的经典实验。.

新!!: RNA世界學說和米勒-尤里实验 · 查看更多 »

纽约时报

纽约时报(The New York Times,缩写作 NYT)是一家美國日報,由紐約時報公司於1851年9月18日在美國紐約創辦和持續出版。和《华尔街日报》的保守派旗舰报纸地位相对应,《纽约时报》是美国親自由派的第一大报。 它最初被称作《纽约每日时报》(The New-York Daily Times),创始人为亨利·J·雷蒙德和。.

新!!: RNA世界學說和纽约时报 · 查看更多 »

羟基

基,又称氢氧基,化学式为–OH,是含有氧原子以共價鍵與氫原子連接的化學官能團,有時也稱為醇官能團,是常见的极性基团。羥基基團以共價鍵結合羰基(–C.

新!!: RNA世界學說和羟基 · 查看更多 »

美国国家科学院院刊

《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America,通常简称为PNAS)是美国国家科学院的官方学术周刊。创刊于1915年。院刊出版前沿研究报告、述评、综述、前瞻、学术讨论会论文等。该刊覆盖生物学、化學、物理学、数学和社会科学。.

新!!: RNA世界學說和美国国家科学院院刊 · 查看更多 »

終止子

終止子(Terminator)是一段位於基因或操縱組末端的DNA片段,可中斷轉錄作用。原核生物擁有兩種類型的終止子,包括:.

新!!: RNA世界學說和終止子 · 查看更多 »

病毒

病毒(virus,中文舊稱“濾過性病毒”)是由一个核酸分子(DNA或RNA)与蛋白质构成的非细胞形态,靠寄生生活的介於生命体及非生命體之間的有機物種,它既不是生物亦不是非生物,目前不把它歸於五界(原核生物、原生生物、真菌、植物和動物)之中。它是由一个保护性外壳包裹的一段DNA或者RNA,藉由感染的機制,这些简单的有機体可以利用宿主的细胞系统进行自我复制,但无法独立生长和复制。病毒可以感染几乎所有具有细胞结构的生命体。第一个已知的病毒是烟草花叶病毒,由马丁乌斯·贝杰林克于1899年发现并命名,迄今已有超过5000种类型的病毒得到鉴定。研究病毒的科学称为病毒学,是微生物学的一个分支。 病毒由两到三个成份组成:病毒都含有遺傳物質(RNA或DNA,只由蛋白质组成的朊毒體并不属于病毒);所有的病毒也都有由蛋白质形成的衣壳,用来包裹和保护其中的遗传物质;此外,部分病毒在到达细胞表面时能够形成脂质包膜环绕在外。病毒的形态各异,从简单的螺旋形和正二十面體形到複合型结构。病毒颗粒大约是细菌大小的百分之一。Collier pp.

新!!: RNA世界學說和病毒 · 查看更多 »

生命

生命泛指一类具有稳定的物质和能量代谢现象并且能回应刺激、能进行自我复制(繁殖)的半开放物质系统。簡單來說,也就是具有生命機制的物体The American Heritage Dictionary of the English Language, 4th edition, published by Houghton Mifflin Company, via.

新!!: RNA世界學說和生命 · 查看更多 »

生命起源

在物質科學與無生源論中,生命起源的研究對象主要是關於地球上的生命,如何經歷約39到41億年的演化,從無生物(或死物)成為生物。2017年,科學家在加拿大魁北克發現42.8億年前的微體化石,認定可能是地球上最古老的生命證據。.

新!!: RNA世界學說和生命起源 · 查看更多 »

遗传学

遗传学是研究生物体的遗传和变异的科学,是生物学的一个重要分支Hartl D, Jones E (2005)。史前时期,人们就已经利用生物体的遗传特性通过选择育种来提高谷物和牲畜的产量。而现代遗传学,其目的是寻求了解遗传的整个过程的机制,则是开始于19世纪中期孟德尔的研究工作。虽然孟德尔并不知道遗传的物理基础,但他观察到了生物体的遗传特性,某些遗传单位遵守简单的统计学规律,这些遗传单位现在被称为基因。 基因位于DNA上,而DNA是由四类不同的核苷酸组成的链状分子,DNA上的核苷酸序列就是生物体的遗传信息。天然DNA以双链形式存在,两条链上的核苷酸互补,而每一条链都能够作为模板来合成新的互补链。这就是生成可以被遗传的基因的复制方式。 基因上的核苷酸序列可以被细胞翻译以合成蛋白质,蛋白质上的氨基酸序列就对应着基因上的核苷酸序列。这种对应性被称为遗传密码。蛋白质的氨基酸序列决定了它如何折叠成为一个三维结构,而蛋白质结构则与它所发挥的功能密不可分。蛋白质执行细胞中几乎所有的生物学进程来维持细胞的生存。DNA上的一个基因的改变可以改变其编码的蛋白质的氨基酸,并可能改变此蛋白质的结构和功能,进而对细胞甚至整个生物体造成巨大的影响。 虽然遗传学在决定生物体外形和行为的过程中扮演着重要的角色,但此过程是遗传学和生物体所经历的环境共同作用的结果。 例如,虽然基因能够在一定程度上决定一个人的体重,人在孩童时期的所经历的营养和健康状况也对他的体重有重大影响。.

新!!: RNA世界學說和遗传学 · 查看更多 »

诺贝尔奖

诺贝爾奖(Nobelpriset,Nobelprisen),是根据瑞典化学家阿尔弗雷德·诺贝尔的遗嘱於1901年開始頒發的奖项。诺贝尔奖分设物理、化学、生理学或医学、文学、和平和经济学六个奖项(经济学奖于1968由瑞典中央银行增设,全称“瑞典银行纪念诺贝尔经济科学奖”,通称“诺贝尔经济学奖”)。诺贝尔奖普遍被认为是所颁奖的领域内最重要的奖项。.

新!!: RNA世界學說和诺贝尔奖 · 查看更多 »

诺贝尔生理学或医学奖得主列表

诺贝尔生理学或医学奖得主列表,是诺贝尔生理学或医学奖的得主列表。 诺贝尔生理学或医学奖于1901年首次颁发,得主是德国科学家埃米尔·阿道夫·冯·贝林。每一位获奖者都会得到一块奖牌,一份获奖证书,以及一笔不菲的奖金,奖金的数额每年会有变化。例如,1901年,冯·贝林得到的奖金为150,782瑞典克朗,相当于2008年12月的7,731,004瑞典克朗;而2008年,哈拉尔德·楚尔·豪森、弗朗索瓦丝·巴尔-西诺西和吕克·蒙塔尼分享了总数为一千万瑞典克朗的奖金(略多于100万欧元,或140万美元)。该奖于每年12月10日,即阿尔弗雷德·诺贝尔逝世周年纪念日,以隆重的仪式在斯德哥尔摩颁发。 诺贝尔生理学或医学奖得主的研究领域分布相当广。截至2000年,有13名获奖者来自神经生物学领域,而有13名则在中间代谢研究中做出贡献。1939年的获奖者,德国人格哈德·多馬克,被其政府禁止领奖。虽然后来他得到了奖牌和获奖证书,却没有得到奖金。截至2014年,共有12位女性获得该奖项,人數僅次於16名的和平獎和13名的文學獎,是女性得主第三多的諾貝爾獎項,她们是格蒂·科里(1947年)、罗莎琳·萨斯曼·耶洛(1977年)、巴巴拉·麦克林托克(1983年)、丽塔·列维-蒙塔尔奇尼(1986年)、格特魯德·B·埃利恩(1988年)、克里斯汀·紐斯林-沃爾哈德(1995年)、琳达·巴克(2004年)、弗朗索瓦丝·巴尔-西诺西(2008年)、伊麗莎白·布萊克本(2009年)、卡羅爾·格雷德(2009年)、邁-布里特·莫澤(2014年)和屠呦呦(2015年)。截至2015年,共有210人获得过诺贝尔生理学或医学奖。该奖有9年因故停发(1915-1918年、1921年、1925年、1940-1942年)。.

新!!: RNA世界學說和诺贝尔生理学或医学奖得主列表 · 查看更多 »

麻省理工学院

麻省理工學院(Massachusetts Institute of Technology,縮寫為MIT)是位於美國麻薩諸塞州劍橋市的私立研究型大學。成立於1861年,當時目的是為了響應。學校採用了辦學,早期著力於應用科學與工程學的實驗教學。麻省理工的研究人員在二戰及冷戰期間,致力開發電腦、雷達及慣性導航系統技術;戰後的防禦性科技研究使學校得以進一步發展,教職員人數及校園面積在的帶領下有所上升。大學於1916年遷往現在位於查爾斯河北岸的校址,沿岸伸延逾,佔地。 擁有6間學術學院、32個學系部門的麻省理工學院常獲納入全球最佳學府之列。學校一直聞名於物理科學與工程學的教研,但在近代亦大力發展諸如生命科學、經濟學、管理學、語言學等其他學術範疇。別名「工程師」的麻省理工體育校隊合計31支,涵蓋不同項目,學生因此可參與不同類型的跨校體育聯賽。 ,著名麻省理工師生、校友或研究人員包括了91位諾貝爾獎得主、52位國家科學獎章獲獎者、45位羅德學者、38名麥克阿瑟獎得主、6名菲爾茲獎獲獎者、25位图灵奖得主。此校同時具很強的創業文化,由其校友所創辦的公司利潤總值相當於全球第十一大經濟體。.

新!!: RNA世界學說和麻省理工学院 · 查看更多 »

辅因子

輔因子(cofactor)指與酶(酵素)結合且在催化反應中必要的非蛋白質化合物。某些分子如水和部分常見的離子所扮演的角色和輔因子相當類似,但由於含量不受限制且普遍存在,因此不歸類為輔因子。 辅因子可以被分类为或称为"辅酶"的复合有机分子,后者主要衍生自少量的维生素和其他有机必需营养素。 一個不含輔因子的酶稱為脫輔基酶(apoenzyme),脫輔基酶加上輔因子並產生完整作用時,稱為全酶(holoenzyme): 金屬離子是常見的輔因子,這些金屬離子反映在生物必須的微量元素名單當中。例如鈣、鎂、錳、鐵、鈷、鎳、銅、鋅與鉬等。除了這些無機化學物之外,輔因子也包括一些有機物質,例如血紅蛋白中的鐵。另外有些維生素也可作為輔因子如維生素C;或是輔因子的前趨物,如維生素B1。.

新!!: RNA世界學說和辅因子 · 查看更多 »

胞嘧啶

胞嘧啶(cytosine, C),學名為2-羰基-4-氨基嘧啶,是组成DNA的四种基本碱基之一。胞嘧啶核苷、胞嘧啶核苷酸均可作为升高白细胞(白血球)的药物。可由二巯基脲嘧啶、浓氨水和氯乙酸为原料合成制得。 Category:胺 Category:嘧啶酮.

新!!: RNA世界學說和胞嘧啶 · 查看更多 »

蘇糖核酸

蘇糖核酸(Threose nucleic acid,TNA)是一種與DNA和RNA相似的化學物質,但組成物有所不同。地球上已知生物並未發現體內有此物質。 TNA的骨架是由重複排列的蘇糖(threose)單位,經由磷酸酯鍵連結而成。在實驗室中,可利用DNA聚合酶合成出DNA與TNA的混合長鏈。.

新!!: RNA世界學說和蘇糖核酸 · 查看更多 »

肽(peptide,來自希臘文的“消化”),即胜肽,又稱縮氨酸,是天然存在的小生物分子,介於胺基酸和蛋白質之間的物質。 由於胺基酸的分子最小,蛋白質最大,而它們則是氨基酸單體組成的短鏈,由肽(酰胺)鍵連接。當一個氨基酸的羧基基團與另一個氨基酸的氨基反應時,形成該共價化學鍵。肽由氨基酸組成的短鏈是精準的蛋白質片段,其分子只有纳米般大小,腸胃、血管及肌膚皆極容易吸收。二胜肽(簡稱二肽),就是由二個胺基酸組成的蛋白質片段,兩個或以上的胺基酸脫水縮合形成若干個肽鍵從而組成一個肽,多個肽進行多級折叠就組成一個蛋白質分子。蛋白質有時也稱為“多肽”。.

新!!: RNA世界學說和肽 · 查看更多 »

肽键

肽鍵(Peptide bond,)是一分子胺基酸的α-羧基(-COOH)和另一分子胺基酸的α-胺基(-NH2)脱水缩合形成的酰胺键,即-CO-NH-,為連結兩單體胺基酸之共價鍵,氨基酸借肽键联结成多肽链。由於共振而無法自由旋轉,具部分雙鍵特性。.

新!!: RNA世界學說和肽键 · 查看更多 »

肽核酸

肽核酸(Peptide nucleic acid;PNA)是一種與DNA和RNA相似的化學物質,可經由人工合成製造,用來作為生物學研究或是醫學治療。地球上已知的生物並未發現任何體內擁有PNA的個體。 PNA的骨架是由重複排列的N-2-(氨乙基)-甘氨酸(N-(2-aminoethyl)-glycine)單位,經由肽鍵所組合而成,且鹼基與骨架之間是以亞甲羰鍵相連。與多肽鏈相似的是PNA也有N端(氮端)與C端(碳端)的差別。 由於PNA沒有如DNA或RNA上的磷酸基團,因此PNA與DNA之間缺乏電性相斥的現象,使兩者之間的結合強度大於DNA與DNA。肽核酸基团构象不同于普通核酸, 不易被蛋白酶或者核酸酶水解,且碱基配对特异性极强,热稳定性高。有一些理論認為早期地球上的生命型態是以PNA為遺傳物質,但目前沒有證據。.

新!!: RNA世界學說和肽核酸 · 查看更多 »

脱氧核糖核酸

--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.

新!!: RNA世界學說和脱氧核糖核酸 · 查看更多 »

自催化反应

自催化是指一個化學反應所生成之產物為該反應之催化劑。 若一組化學反應中一部分反應的產物足以催化其他反應,使得整組化學反應可自我供應能量和『食物分子』,則此組反應可稱作集體自催化(collectively autocatalytic)(參見:en:autocatalytic set).

新!!: RNA世界學說和自催化反应 · 查看更多 »

自我复制

自我复制(Self-replication) 是动力系统的一种行为,这种行为可以产生出和自身相同的结构。在适当的环境下,细胞会通过细胞分裂进行自我复制。在细胞分裂的过程中,DNA完成了自我复制,并且可以通过繁殖传递给后代。生物病毒也可以自我复制,但是必须在感染过程中使用寄主细胞内的复制机制。有害的朊病毒是一种蛋白质,它可以通过将正常的蛋白质变为有害的朊病毒而自我复制。 计算机病毒可以使用计算机的软件和硬件自我复制。自我复制是机器人学中的研究课题,也是科学幻想中的热门主题。自我复制机制常常不会完美地复制个体,而是通过来产生各种差异。这些变异会成为自然选择的基础,其中一些有利于在现有环境下生存的变异会保留下来,而其他的会被淘汰。.

新!!: RNA世界學說和自我复制 · 查看更多 »

腺嘌呤

腺嘌呤(Adenine,簡稱A,旧称维生素B4)是一種嘌呤,在生物化學上具有許多不同的功用。於細胞呼吸中,是以富有能量的腺苷三磷酸(ATP),以及輔因子煙醯胺腺嘌呤二核苷酸(NAD)、黃素腺嘌呤二核苷酸(FAD)等形式發生作用。並且在蛋白質生物合成過程裡作為DNA與RNA的組成物。.

新!!: RNA世界學說和腺嘌呤 · 查看更多 »

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

新!!: RNA世界學說和蛋白质 · 查看更多 »

GNA

GNA全名Glycerol nucleic acid,中文直譯甘油核酸。是一種與DNA或RNA相似的化學物質,但組成物有所不同。並不存在任何目前已知的自然界生物體內。 GNA的骨架是由許多重複的甘油(DNA與RNA為五碳糖)經由磷酸酯鍵的連結所組成。雖然甘油分子只有3個碳原子,但GNA仍然可比表現出沃森-克--克鹼基配對(A對T;G對C),而且比起DNA與RNA,GNA的鹼基配對更為穩定,需要較高的融解溫度(Tm)才能解開。.

新!!: RNA世界學說和GNA · 查看更多 »

RNA聚合酶

RNA聚合酶(RNA polymerase、RNAP、RNApol、DNA-dependent RNA polymerase,EC2.7.7.6)或稱核糖核酸聚合酶,是一種負責從DNA或RNA模板製造RNA的酶。RNA聚合酶是通過稱為轉錄的過程來建立RNA鏈,以完成這個工程。在科學上,RNA聚合酶是一個在RNA轉錄本3'端聚合核糖核甘酸的核苷轉移酶。RNA聚合酶是一種非常重要的酶,且可在所有生物、細胞及多種病毒中可見。 RNA聚合酶是於1960年分別由山姆·懷斯及霍維茲同時發現。但在此之前,於1959年,諾貝爾獎頒發給了塞韋羅·奧喬亞,因為他的發現當時認為是RNA聚合酶,但其實是核糖核酸酶。.

新!!: RNA世界學說和RNA聚合酶 · 查看更多 »

RRNA

#重定向 核糖體核糖核酸.

新!!: RNA世界學說和RRNA · 查看更多 »

TRNA

#重定向 转运核糖核酸.

新!!: RNA世界學說和TRNA · 查看更多 »

核糖

核糖(Ribose)是一種五碳醛醣(戊醛醣),一般常見的型態為D-核糖。是RNA的組成物之一,也是ATP及NADH等生化代謝所需分子的原料。.

新!!: RNA世界學說和核糖 · 查看更多 »

核糖体

核糖体,旧称“核糖核蛋白体”或“核蛋白体”,是细胞中的一种细胞器因为在某些场合“细胞器”一词也会被用于专指具有磷脂双分子层膜结构的亚细胞结构,而核糖体虽然已是一种公认的细胞器,却是没有被膜包裹、完全裸露的大分子,所以核糖体有时会被严格地定义为“无膜细胞器”(non-membranous organelles)。,由一大一小两个-zh-tw:次單元;zh-cn:亚基-结合形成,主要成分是相互缠绕的RNA(称为“核糖体RNA”,ribosomal RNA,简称“rRNA”)和蛋白质(称为“核糖体蛋白质”,ribosomal protein,简称“RP”)。核糖体是细胞内蛋白质合成的场所,能读取信使RNA核苷酸序列所包含的遗传信息,并使之转化为蛋白质中氨基酸的序列信息以合成蛋白质。在原核生物及真核生物(地球上的两种具有细胞结构的主要生命形式,前者可细分为古菌、真细菌两类)的细胞中都有核糖体存在。一般而言,原核细胞只有一种核糖体,而真核细胞具有两种核糖体(线粒体和叶绿体中的核糖体与细胞质核糖体不相同)。 核糖体在细胞中负责完成“中心法则”裡由RNA到蛋白质这一过程,此过程在生物学中被称为“翻译”。在进行翻译前,核糖体小次單元会先与从细胞核中转录得到的信使RNA(messenger RNA,简称“mRNA”)结合,再结合核糖体大次單元构成完整的核糖体之后,便可以利用细胞质基质中的转运RNA(transfer RNA,简称“tRNA”)运送的氨基酸分子合成多肽。当核糖体完成对一条mRNA单链的翻译后,大小--会再次分离。 英语中的“核糖体”(ribosome)一词是由“核糖核酸”(“ribo”)和希腊语词根“soma”(意为“体”)组合而成的。.

新!!: RNA世界學說和核糖体 · 查看更多 »

核糖体蛋白质

核糖体蛋白质(Ribosomal Protein,简称“核糖体蛋白”或“RP”)是参与构成核糖体的所有蛋白质的统称。由于核糖体蛋白质需要高浓度的盐溶液和强解离剂(如含高浓度Mg2+的67%的CH3COOH或3mol/L LiCl~4mol/L (NH2)2CO)才能将其分离,所以这类蛋白质相对于“核糖体相关蛋白质”也被称为“真核糖体蛋白质”。 因为在核糖体自组装过程中,这类蛋白质逐批与rRNA结合形成核糖体的大、小亚基,所以这些蛋白质又按与rRNA结合的顺序分为“初级结合蛋白”、“次级结合蛋白”与“迟结合蛋白”等几组。 当前,对核糖体蛋白质的了解主要来自对大肠杆菌(E.

新!!: RNA世界學說和核糖体蛋白质 · 查看更多 »

核糖核酸

核糖核酸(Ribonucleic acid),簡稱RNA,是一類由核糖核苷酸通過3',5'-磷酸二酯鍵聚合而成的線性大分子。自然界中的RNA通常是單鏈的,且RNA中最基本的四種鹼基爲A(腺嘌呤)、U(尿嘧啶)、G(鳥嘌呤)、C(胞嘧啶)通過轉錄後修飾,RNA可能會帶上(Ψ)這樣的稀有鹼基,相對的,與RNA同爲核酸的DNA通常是雙鏈分子,且含有的含氮鹼基爲A(腺嘌呤)、T(胸腺嘧啶)、G(鳥嘌呤)、C(胞嘧啶)四種。 RNA有着多種多樣的功能,可在遺傳編碼、翻譯、調控、基因表達等過程中發揮作用。按RNA的功能,可將RNA分爲多種類型。比如,在細胞生物中,mRNA(信使RNA)爲遺傳信息的傳遞者,它能夠指導蛋白質的合成。因爲mRNA有編碼蛋白質的能力,它又被稱爲編碼RNA。而其他沒有編碼蛋白質能力的RNA則被稱爲非編碼RNA(ncRNA)。它們或通過催化生化反應,或通過調控或參與基因表達過程發揮相應的生物學功能。比如,tRNA(轉運RNA)在翻譯過程中起轉運RNA的作用,rRNA(核糖體RNA)於翻譯過程中起催化肽鏈形成的作用,(小RNA)起到調控基因表達的作用。此外,RNA病毒甚至以RNA作爲它們的遺傳物質。 RNA通常由DNA通過轉錄生成。RNA在細胞中廣泛分佈,真核生物的細胞核、細胞質、粒線體中都有RNA。.

新!!: RNA世界學說和核糖核酸 · 查看更多 »

核酶

核酶(ribozyme,又譯核糖酶),又称核酸类酶、酶RNA、类酶RNA,是具有催化特定生物化学反应的功能的RNA分子,类似于蛋白质中的酶。.

新!!: RNA世界學說和核酶 · 查看更多 »

核酸

核酸(nucleic acids)是一种通常位于细胞核内的大型生物分子,負責生物体遗传信息的携带和传递。核酸有兩大類,分別是脱氧核糖核酸(DNA)和核糖核酸(RNA)。 核酸的单体结构为核苷酸。每一个核苷酸分子由三部分组成:一个五碳糖、一个含氮碱基、和一个磷酸基。如果其五碳糖是脱氧核糖則為脱氧核糖核苷酸,此單體之聚合物是DNA。如果其五碳糖是核糖則為核糖核苷酸,此單體之聚合物是RNA。核苷酸也被称为核苷酸磷酸盐。 核酸是最重要的生物大分子(其余为氨基酸/蛋白质,糖/碳水化合物,脂质和/脂肪)。它们大量存在于所有活的东西,功能有编码,传递和表达遗传信息 - 换句话说,信息通过核酸序列被传递。DNA分子含有生物物种的所有遗传信息,为双链分子,其中大多数是链状结构大分子,也有少部分呈环状结构,分子量一般都很大。RNA主要是负责DNA遗传信息的翻译和表达,为单链分子,分子量要比DNA小得多。 核酸存在于所有动植物细胞、微生物和病毒、噬菌体内,是生命的最基本物质之一,对生物的生长、遗传、变异等现象起着重要的决定作用。 核酸是在1869年被科学家弗雷德里希·米歇尔发现。核酸实验研究构成了现代生物学和医学研究的重要组成部分,形成了基因组和法医学,以及生物技术和制药行业的基础。.

新!!: RNA世界學說和核酸 · 查看更多 »

核苷酸

核苷酸(Nucleotide)为核酸的基本组成单位。核苷酸由一個含氮鹼基作為核心,加上一個五碳糖和一個或者多个磷酸基團組成。含氮碱基有五种可能,分别是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶。五碳糖为脱氧核糖者称为脱氧核糖核苷酸(DNA的單體),五碳糖为核糖者称为核糖核苷酸(RNA的單體)。 根据构成核酸的核苷酸数量分为寡核苷酸(少于或等于15个核苷酸)和多核苷酸(15个核苷酸以上)。.

新!!: RNA世界學說和核苷酸 · 查看更多 »

氨基酸

胺基酸是生物學上重要的有機化合物,它是由胺基(-NH2)和羧基(-COOH)的官能團組成的,以及一個側鏈连到每一個胺基酸。胺基酸是構成蛋白質的基本單位。賦予蛋白質特定的分子結構形態,使他的分子具有生化活性。蛋白質是生物体內重要的活性分子,包括催化新陳代謝的酶(又称“酵素”)。 不同的胺基酸脱水缩合形成肽(蛋白質的原始片段),是蛋白質生成的前.

新!!: RNA世界學說和氨基酸 · 查看更多 »

氰化氢

氰化氫,又稱氫氰酸,化学式HCN。标准状态下为液體,剧毒且致命,無色而苦,並有淡淡的杏仁氣味(苦杏仁有苦杏仁苷,溶于水會釋放出氰化氫),能否嗅出視乎個人基因。氰化氫是一种弱酸,沸點26℃(79°F)。氰化氫是一個線性分子,碳和氮之間具有三鍵。.

新!!: RNA世界學說和氰化氢 · 查看更多 »

沃特·吉爾伯特

沃特·吉爾伯特(Walter Gilbert,),美國物理學家與生物化學家,分子生物學的早期研究者之一,和諾貝爾獎得主。.

新!!: RNA世界學說和沃特·吉爾伯特 · 查看更多 »

泛種論

泛種論,或稱胚種論、宇宙撒種說(Panspermia,πανσπερμία ),是一種假說,猜想各種形態的微生物存在於全宇宙,並藉著流星、小行星與彗星散播、繁衍。 在泛種論相關的假說裡,生命可以在宇宙中移動、存活,是一些行星遭到撞擊後,彈射到宇宙中,夾帶類似嗜極生物的细菌之類生命體的殘骸。這些生命隨著殘骸移動到其他行星或原行星盤前可能會進入類似休眠的状态,完全靜止活動。當這些生命進入適合生存的行星,牠們便會開始活動並啟動進化這是一種泛種論的變體,稱為「死亡胚種論」(necropanspermia),出自於天文學家保羅·威森(Paul Wesson)的論述:「有機體在到達銀河系的新家前技術性進入死去、復活,無論如何,這是可能的。」 。泛種論並未解釋生命的起源,它只是說明了維持生命存續的可能。.

新!!: RNA世界學說和泛種論 · 查看更多 »

活化石

活化石,又稱孑遺生物,是指任何生物其類似種只存在於化石中,而沒有其他現存的近似種。這些種類曾經從主要的滅絕事件中存活下來,並保留過去原始的特性。活化石定義是一般先發現化石再發現活體,或活體與確認的化石屬同一種且同時存在。物種起源久遠,在新生代第三紀或更早有廣泛的分佈,而目前大部分物種已經因地質、氣候的改變而滅絕,這些現存植物的形狀和在化石中發現的植物基本相同,保留了其遠古祖先的原始形狀。且其近緣類群多數已滅絕,比較孤立,進化緩慢的植物便可稱為孑遺植物或活化石,並不是單從植物年齡而決定。.

新!!: RNA世界學說和活化石 · 查看更多 »

活性位点

活性位点(Active site),又称活化位置,是指一個酵素中具有催化能力與結合位置的部位。其結構與化學性質可供辨識受質,並與受質結合。活化位置通常是酵素表面上一個類似口袋的區域,內部含有可與特定受質發生反應的殘基。.

新!!: RNA世界學說和活性位点 · 查看更多 »

新科學人

《新科學人》(也作《新科學家》)(New Scientist),創刊於1956年,由Reed Business Information Ltd.出版發行的國際性科學雜誌。每週發刊一次。並於1996年設立網路版,每日發佈科學新聞。 它並不是同行評審的科學期刊,不過仍廣為科學和非科學領域的人士閱讀,以接軌非專門或有興趣領域的最新發展。.

新!!: RNA世界學說和新科學人 · 查看更多 »

手性

手性,又稱對掌性(英语:chirality、iː)一词源于希腊语词干“手”χειρ(chir),在多种学科中表示一种重要的对称特点。 如果某物体与其镜像不同,则其被称为“手性的(英语:chiral)”,且其镜像是不能与原物体重合的,就如同左手和右手互为镜像而无法叠合。手性物体与其镜像被称为对映体(enantiomorph,希腊语意为“相对/相反形式”);在有关分子概念的引用中也被称为对映异构体。可与其镜像叠合的物体被称为非手性的(achiral),有时也称为双向的(amphichiral)。.

新!!: RNA世界學說和手性 · 查看更多 »

重定向到这里:

RNA世界RNA世界学说

传出传入
嘿!我们在Facebook上吧! »