徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

CpG位点

指数 CpG位点

CpG位点(CpG sites,或称为CG位点)是指DNA的某个区域,其上的碱基序列以胞嘧啶接着鸟嘌呤出现。“CpG”是“—C—磷酸—G—”的缩写 ,指磷酸二酯键连接了胞嘧啶和鸟嘌呤,其中C位于5'端而G位于3'端。 在CpG位点中的胞嘧啶可以被甲基化为5-甲基胞嘧啶。在哺乳动物中,基因内CpG位点的甲基化会改变此基因的表达,对这一表达调控的研究是表观遗传学的重要组成部分。涉及添加甲基基团的酶称为。 在哺乳动物中,70%到80%的CpG位点的胞嘧啶是甲基化的。 未甲基化的CpG位点可以被免疫系统的浆细胞样树突状细胞、单核细胞、NK细胞和B细胞上的TLR9(Toll样受体9)识别,来检测体内的微生物感染。.

24 关系: Alu元件基因組銘印单核细胞哺乳动物啟動子B细胞碱基对磷酸二酯键管家基因编码区生物钟癌基因DNA甲基化表觀遺傳學鳥嘌呤胞嘧啶胸腺嘧啶肿瘤抑制基因脫氨作用NK细胞TLR9浆细胞样树突状细胞5-甲基胞嘧啶

Alu元件

Alu元件(Alu element)是人类基因组中一组散在分布的相关序列,每个长约300bp。单个成员的每个末端上有Alu(的缩写)限制酶的切割位点,并由此命名。在灵长类的基因组中存在着大量不同种类的Alu元件。事实上,Alu元件是人类基因组中丰度最高的转座元件。它们源于小胞质7SL RNA,后者是信号识别颗粒的成分之一。靈長總目祖先的基因组中发生了7SL RNA成为Alu元件前体的事件。 Alu的插入与若干遗传性人类疾病及多种癌症有关。 对Alu元件的研究对于阐明人类群体遗传学和包括人類演化在内的灵长类进化来说是十分重要的。.

新!!: CpG位点和Alu元件 · 查看更多 »

基因組銘印

基因銘印(Genomic imprinting)又譯遗传印记或遺傳銘印(genetic imprinting)是一種遺傳學現象,指只有來自特定親代的基因得以表达,而不遵从孟德尔定律依靠单亲传递某些遗传学性状的现象。此現象已知可見於昆蟲、哺乳類动物及開花植物。 在一般二倍體生物的體細胞中擁有兩份基因組,通常這兩份基因組中的等位基因都能表現。但少數(小於1%)的基因會受到銘印的影響,使其中一份基因失去作用。例如一種製造類胰島素的生長因子的基因,只有來自父親的等位基因能夠表現。.

新!!: CpG位点和基因組銘印 · 查看更多 »

单核细胞

单核细胞(Monocyte)是人体免疫系统中的一种白细胞。其在人体免疫系统内有两种作用:一,补充正常状态下的巨噬细胞和树状细胞;二,在有炎症信号下,单核细胞会在8到12小时快速聚集到感染组织,并分化出巨噬细胞和树状细胞产生免疫反应。.

新!!: CpG位点和单核细胞 · 查看更多 »

哺乳动物

哺乳动物是指脊椎动物亚门下哺乳綱(学名:Mammalia)的一类用肺呼吸空气的温血脊椎动物,因能通过乳腺分泌乳汁来给幼体哺乳而得名。 按照《世界哺乳动物物种》(Mammal Species of the World)一书在2005年的资料,哺乳纲目前有约5676个(2008版的IUCN红皮书为5488个)不同物种,分布在1229个属,153个科和29个目中,约占脊索动物门的10%,地球所有物种的0.4%。啮齿目(老鼠、豪猪、海狸、水豚等)、翼手目(蝙蝠等)和鼩形目(鼩鼱等)是哺乳动物中物种最多的目。 哺乳动物的身体结构复杂,有区别于其他类群的大脑结构、恒温系统和循环系统,具有为后代哺乳、大多数属于胎生、具有毛囊和汗腺等共通的外在特征。 它们外型多样,小至体长30毫米长有翅膀的凹脸蝠,大至体长33米形同鱼类的蓝鲸。它们有很好的环境适应能力,分布在从海洋到高山,从热带到极地的广泛区域。人类也是哺乳动物的一员。.

新!!: CpG位点和哺乳动物 · 查看更多 »

啟動子

啟動子(promoter)在遺傳學中是指一段能使基因進行轉錄的脱氧核糖核酸(DNA)序列。啟動子可以被RNA聚合酶辨認,並开始轉錄。在核糖核酸(RNA)合成中,啟動子可以和决定转录的开始的转录因子产生相互作用,控制基因表达(转录)的起始时间和表达的程度,包含核心启动子区域和调控区域,就像“开关”,决定基因的活动,繼而控制細胞开始生產哪一種蛋白質。 启动子本身并无编译功能,但它拥有对基因轉譯胺基酸的指挥作用,就像一面旗帜,其核心部分是非编码区上游的RNA聚合酶结合位点,指挥聚合酶的合成,这种酶指导RNA的复制合成。因此该段位的启动子发生突变(变异),将对基因的表达有着毁灭性作用。 完全的啟動子稱為規範序列。.

新!!: CpG位点和啟動子 · 查看更多 »

B细胞

B细胞(B淋巴球)有時稱之為「朝囊定位細胞」(bursa oriented cells),這是因為它們首次在雞的腔上囊(Bursa of Fabricius)被提及的關係。 在腸道的派亞氏腺體(Peyer's glands)中的淋巴組織,被認為具有與鳥類的Fabricius組織中的鳥囊(avian bursa)同樣的功能。在魚類,它們可能就是那位於腸中的淋巴樣組織,因為口服疫苗時,會刺激魚血液中產生相對應的抗體蛋白。 它是一种在骨髓中成熟的细胞,在體液免疫中產生抗體,起到重要作用。當遇到抗原時,會分化成核比例較大的大淋巴球,叫漿細胞。漿細胞的細胞質中且會出現一些顆粒,這些顆粒容易被甲基藍等天青染料所染色,同時會出現抗體,表現在細胞膜或釋放出去。另一部分B细胞经过抗原激活后并不成为浆细胞,而是成为记忆B细胞。当再次遇到相同抗原时,记忆B细胞能迅速做出反应,大量分化增殖。.

新!!: CpG位点和B细胞 · 查看更多 »

碱基对

碱基对是形成核酸DNA、RNA单体以及编码遗传信息的化学结构。组成碱基对的碱基包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)、尿嘧啶(U)。在DNA或某些双链RNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使碱基配对遵循一定的规律,腺嘌呤一定与胸腺嘧啶或者在RNA中的尿嘧啶配对,鸟嘌呤与胞嘧啶配对。这就是碱基互补配对原则。它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。它还与核苷酸互换使用,尽管后者是由一个五碳糖、磷酸和一个碱基组成。 鹼基對通常簡寫做bp(base pair);千鹼基對 為kbp,或簡寫作kb(對於雙鏈核酸。對於單鏈核酸,kb指千鹼基);兆鹼基对即百萬對鹼基簡寫作Mbp。 人类也成功的将人造碱基对加入到了DNA中。.

新!!: CpG位点和碱基对 · 查看更多 »

磷酸二酯键

#重定向 磷酸二酯鍵.

新!!: CpG位点和磷酸二酯键 · 查看更多 »

管家基因

管家基因(Housekeeping gene),又名持家基因,是指在生物体内所有细胞中都表达,并且为维持细胞基本生命活动所需而时刻都在表达的高度保守的基因。 Category:遗传学 Category:基因表現.

新!!: CpG位点和管家基因 · 查看更多 »

编码区

基因的编码区(Coding region),亦称为“编码序列”(Coding sequence)或“CDS”(Coding DNA Sequence),是指DNA或RNA中由外显子组成,编码蛋白质的部分。该区域的边界范围从靠近5′末端的起始密码子开始,到靠近3′末端的终止密码子为止。mRNA的编码区范围位于5′非翻译区和部分同样为外显子的3′非翻译区之间。 某个生物体的编码区是指该生物由基因编码区组成的基因组的总和。.

新!!: CpG位点和编码区 · 查看更多 »

生物钟

生物钟指生物生命活动的内在结构性。生物通过它能感受外界环境的周期性变化,并调节本身生理活动步伐,使其在一定时期开始,进行或结束。.

新!!: CpG位点和生物钟 · 查看更多 »

癌基因

基因(Oncogene,亦称为致癌基因)是细胞遗传物质的一部分, 它们参与细胞从正常生长状态到肿瘤的过程。它们通过诱导或突变被激活。.

新!!: CpG位点和癌基因 · 查看更多 »

DNA甲基化

DNA甲基化(DNA methylation)為DNA化學修飾的一種形式,能在不改變DNA序列的前提下,改變遺傳表現。為外遺傳編碼(epigenetic code)的一部分,是一種外遺傳機制。DNA甲基化過程會使甲基添加到DNA分子上,例如在胞嘧啶環的5'碳上:這種5'方向的DNA甲基化方式可見於所有脊椎動物。 在人類細胞內,大約有1%的DNA鹼基受到了甲基化。在成熟體細胞組織中,DNA甲基化一般發生於CpG雙核苷酸(CpG dinucleotide)部位;而非CpG甲基化則於胚胎幹細胞中較為常見 。植物體內胞嘧啶的甲基化則可分為對稱的CpG(或CpNpG),或是不對稱的CpNpNp形式(C與G是鹼基;p是磷酸根;N指的是任意的核苷酸)。 特定胞嘧碇受甲基化的情形,可利用亞硫酸鹽定序(bisulfite sequencing)方式測定。DNA甲基化可能使基因沉默化,進而使其失去功能。此外,也有一些生物體內不存在DNA甲基化作用。.

新!!: CpG位点和DNA甲基化 · 查看更多 »

表觀遺傳學

表觀遺傳學(英语:epigenetics)又譯為表徵遺傳學、擬遺傳學、表遺傳學、外遗传学以及後遺傳學,在生物学和特定的遗传学领域,其研究的是在不改变DNA序列的前提下,通过某些机制引起可遗传的基因表达或细胞表现型的变化。 表徵遗传学是20世纪80年代逐渐兴起的一门学科,是在研究与经典的孟德尔遗传学遗传法则不相符的许多生命现象过程中逐步发展起来的。 表徵遗传现象包括DNA、RNA干扰、组蛋白修饰等。与经典遗传学以研究基因序列影响生物学功能为核心相比,表徵遗传学主要研究这些“表徵遗传现象”建立和维持的机制。其研究内容主要包括两类,一类为基因选择性转录表达的调控,有DNA甲基化、基因印记、组蛋白共价修饰和染色质重塑;另一类为基因转录后的调控,包括基因组中非编码RNA、微小RNA、反义RNA、内含子及核糖开关等。 表徵遗传学指基因组相关功能改变而不涉及核苷酸序列变化。例如DNA和组蛋白修饰,两者均能在不改变DNA序列的前提下调节基因的表达;阻遏蛋白通过结合沉默基因从而控制基因的表达。这些变化可能可以通过细胞分裂而得以保留,并且可能持续几代。这些变化都仅是非基因因素导致的生物体基因表现(或“自我表达”)的不同,由于目前尚不清楚组蛋白的化学修饰是否可遗传,有人对于用此术语描述组蛋白化学修饰提出了异议。 表徵遗传学在真核生物中主要表现在细胞分化过程。在胚胎形态形成过程中,全能干细胞将分化成完全不同的细胞,也就是说,一个受精卵细胞分化出各种不同类型的细胞,包括神经细胞、肌肉细胞、上皮细胞、血管内皮细胞等,并通过抑制其他细胞和激活相关基因而进行持续的细胞分裂。 2011年的相关研究已证实,mRNA甲基化对人体内能量平衡发挥着至关重要的作用,对RNA上的N6-甲基腺苷进行脱甲基治疗可控制FTO基因相关肥胖症,并因此而开创了RNA表徵遗传学的相关领域。.

新!!: CpG位点和表觀遺傳學 · 查看更多 »

鳥嘌呤

鳥嘌呤(Guanine,又稱鳥糞嘌呤)是五種不同碱基中的其中之一,並同時存在於脱氧核醣核酸(DNA)及核醣核酸(RNA)中。鳥嘌呤是嘌呤的一種,並與胞嘧啶(cytosine)以三個氫鍵相連。.

新!!: CpG位点和鳥嘌呤 · 查看更多 »

胞嘧啶

胞嘧啶(cytosine, C),學名為2-羰基-4-氨基嘧啶,是组成DNA的四种基本碱基之一。胞嘧啶核苷、胞嘧啶核苷酸均可作为升高白细胞(白血球)的药物。可由二巯基脲嘧啶、浓氨水和氯乙酸为原料合成制得。 Category:胺 Category:嘧啶酮.

新!!: CpG位点和胞嘧啶 · 查看更多 »

胸腺嘧啶

胸腺嘧啶(Thymine,簡寫為 T),又稱為5-甲基尿嘧啶(5-methyluracil),為嘧啶類鹼基,是形成DNA核苷酸中四種鹼基(G-C-A-T)的其中一種。.

新!!: CpG位点和胸腺嘧啶 · 查看更多 »

肿瘤抑制基因

肿瘤抑制基因(tumor suppressor gene)也称为“抑瘤基因”“抗癌基因”或“隐性癌基因”。是一类抑制细胞过度生长、增殖从而遏制肿瘤形成的基因。抑癌基因是从1980年代发现的一组基因,它们的发现是癌症和细胞生命研究过程中的重要里程碑。正常细胞的癌变是个复杂的、受到多种因素控制的多阶段演变过程。肿瘤抑制基因能够在多个环节上保护正常细胞,使其免于最终癌变。受到内外界因素的影响,可产生损伤,使得此基因发生突变或丢失时,细胞分裂等过程的正常抑制就被解除,若细胞DNA修复和备用机制未能发挥作用,就可能导致正常的细胞转变成为癌细胞。此外,遗传变异和非遗传性的改变(如DNA甲基化),导致基因的正常表达和功能丢失,并产生生理信号转导系统异常。 严格地说,癌通常仅指来源于表皮和内皮的肿瘤,但肿瘤抑制基因(或抑瘤基因)则包括了抑癌基因在内的所有与肿瘤抑制相关的基因。在发现的初期,肿瘤抑制基因也被称为“抗癌基因”(anti-oncogene),意即对抗癌基因的基因。后来发现这类基因的抑制作用可独立于癌基因之外,且不属于显性基因,“抗癌基因”这一名词已渐少用。.

新!!: CpG位点和肿瘤抑制基因 · 查看更多 »

脫氨作用

脫氨作用(,亦可称为脱氨基)是指移除分子上的一個氨基。人類的肝臟經由脫氨作用將氨基酸分解,當氨基酸的氨基被去除之後,會轉變成氨。由碳及氫所組成的殘餘部分,則回收或氧化產生能量。對人體而言,氨具有毒性,因此某些酵素將會在尿素循環中將二氧化碳分子附加其上,使氨轉變成尿素或尿酸。之後這些尿素及尿酸再經由尿液排出體外。 除了氨基酸之外,DNA的構成物之一胞嘧啶也會因為脫氨作用而轉變成尿嘧啶;胞嘧啶受到甲基化之後的產物5-甲基胞嘧啶,則會在脫氨作用下轉變成胸腺嘧啶。.

新!!: CpG位点和脫氨作用 · 查看更多 »

酶(Enzyme( ))是一类大分子生物催化劑。酶能加快化學反應的速度(即具有催化作用)。由酶催化的反應中,反應物稱爲底物,生成的物質稱爲產物。幾乎所有細胞內的代謝過程都離不開酶。酶能大大加快這些過程中各化學反應進行的速率,使代謝產生的物質和能量能滿足生物體的需求。細胞中酶的類型對可在該細胞中發生的代謝途徑的類型起決定作用。對酶進行研究的學科稱爲「酶學」(enzymology)。 目前已知酶可以催化超過5000種生化反應。大部分酶是蛋白質,有少部分酶是具有催化活性的RNA分子,这些酶被称为核酶。酶的特異性是由其獨特的三級結構決定的。 和所有的催化劑一樣,酶通過降低反應活化能加快化學反應的速率。一些酶可以將底物轉化爲產物的速率提高數百萬倍。一個比較極端的例子是。該酶可以使在無催化劑條件下需要進行數百萬年的化學反應在幾毫秒內完成。從化學原理上講,酶和其它所有催化劑一樣,反應不會使其物質量發生變化。酶亦不能改變化學平衡,這一點和其它催化劑也是一樣的。酶和其它催化劑的不同之處在於,它們的專一性要強得多。一些分子可以影響酶的活性。如酶抑制劑能降低酶的活性,酶激活劑能提高酶的活性。許多藥物及毒物是酶的抑制劑。當超出適宜的溫度和pH值後,酶的活性會顯著下降。 酶在工业和人们的日常生活中的应用也非常广泛。例如,药厂用特定的合成酶来合成抗生素;洗衣粉中添加酶能加速附着在衣物上的蛋白质、淀粉或脂肪漬的分解;嫩肉粉中加入木瓜蛋白酶能將蛋白質分解爲稍小的分子,使肉的口感更嫩滑。.

新!!: CpG位点和酶 · 查看更多 »

NK细胞

#重定向 自然杀伤细胞.

新!!: CpG位点和NK细胞 · 查看更多 »

TLR9

Toll样受体9(Toll-like receptor 9)是由人类基因 TLR9 编码的蛋白质,也被称为CD289(分化簇289,cluster of differentiation 289),是Toll样受体(TLR)家族的成员。.

新!!: CpG位点和TLR9 · 查看更多 »

浆细胞样树突状细胞

浆细胞样树突状细胞Plasmacytoid dendritic cells(pDCs)是一种先天性免疫细胞,出现在外周淋巴器官和血液循环中,其占外周血单核细胞(PBMC)的数量不到0.4%。在人中,这些细胞高表达的表面标志物有:CD123、BDCA-2(CD303)和BDCA-4(CD304),低表达的有CD11c或CD14(常见的树突状细胞或单核细胞的表面标志物)。小鼠的pDC表达CD11c、B220、BST-2和Siglec-H 但不表达CD11b。 作为先天免疫系統的组分之一,这些细胞会在细胞内表达细胞内Toll样受体7和9用于探测ssRNA和未甲基化的CpG序列。在刺激和激活后,他们会大量表达type I interferon (主要是IFN-α和IFN-β,免疫系统中关键的多效性的抗病毒物质),产生广泛的影响。 体液循环中的pDCs数量会在慢性的HIV感染或HCV感染时减少。.

新!!: CpG位点和浆细胞样树突状细胞 · 查看更多 »

5-甲基胞嘧啶

5-甲基胞嘧啶(5-methylcytosine)為胞嘧啶受到甲基化之後,附加一個甲基於5號碳上的的型態,結構改變,但與互補鹼基的配對性質不變。 5-甲基胞嘧啶是一種表观遺傳修飾,參與的酵素稱為DNA甲基轉移酶(DNA methyltransferase)。對於細菌而言,5-甲基胞嘧啶可見於各式不同的位置,可用來作為一種標記,保護DNA不受自身的甲基化敏感(methylation-sensitive)限制酶破壞。在植物體內,5-甲基胞嘧啶出現於CpG與CpNpG序列裡。而對真菌及動物來說,則主要存在於CpG雙核苷酸(CpG dinucleotides)中。所有真核生物細胞中皆只有少量此類位置,脊椎動物的Cpg胞嘧啶約有70%到80%受到甲基化。 胞嘧啶受到脫氨作用後,會轉變成尿嘧啶,不過此情形相會被DNA修復酵素辨識並移除,而5-甲基胞嘧啶在脫氨作用之後則會形成胸腺嘧啶。此種轉變會導致置換突變(transition mutation)的發生。 一般的胞嘧啶可在某些化學物質,如亞硝酸的作用下而發生脫氨作用,進而轉變成胸腺嘧啶。5-甲基胞嘧啶可以抵抗亞硫酸所可能造成的脫氨作用,因此可用亞硫酸定序法(bisulfite sequencing)來分析DNA胞嘧啶的甲基化情形。.

新!!: CpG位点和5-甲基胞嘧啶 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »