徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

双极性晶体管

指数 双极性晶体管

双极性電晶體(bipolar transistor),全称双极性结型晶体管(bipolar junction transistor, BJT),俗称三极管,是一种具有三个终端的电子器件。双极性晶体管是电子学历史上具有革命意义的一项发明,其发明者威廉·肖克利、约翰·巴丁和沃尔特·布喇顿被授予1956年的诺贝尔物理学奖。 这种晶体管的工作,同时涉及电子和空穴两种载流子的流动,因此它被称为双极性的,所以也稱雙極性載子電晶體。这种工作方式与诸如场效应管的单极性晶体管不同,后者的工作方式仅涉及单一种类载流子的漂移作用。两种不同掺杂物聚集区域之间的边界由PN结形成。 双极性晶体管由三部分掺杂程度不同的半导体制成,晶体管中的电荷流动主要是由于载流子在PN结处的扩散作用和漂移运动。以NPN電晶體為例,按照设计,高掺杂的发射极区域的电子,通过扩散作用运动到基极。在基极区域,空穴为多数载流子,而电子少数载流子。由于基极区域很薄,这些电子又通过漂移运动到达集电极,从而形成集电极电流,因此双极性晶体管被归到少数载流子设备。 双极性晶体管能够放大信号,并且具有较好的功率控制、高速工作以及耐久能力,,所以它常被用来构成放大器电路,或驱动扬声器、电动机等设备,并被广泛地应用于航空航天工程、医疗器械和机器人等应用产品中。 通斷(傳遞訊號)時的雙極晶體管表現出一些延遲特性。大多數晶體管,尤其是功率晶體管,具有長的儲存時間,限制操作處理器的最高頻率。一種方法用於減少該存儲時間是使用Baker clamp。.

72 关系: 基本电荷偏置半导体双极性扩散复合外延 (晶体)威廉·肖克利安培安全工作区对数导纳小注入差分放大器二端口网络二氧化硅互補式金屬氧化物半導體场效应管医疗器械分子束外延光子光电二极管固溶体BiCMOS砷化鎵空穴约翰·巴丁热力学温标爾利效應电动机电压源电子电子学电子迁移率电流源菲克定律西門子 (單位)诺贝尔物理学奖贝尔实验室跨导载流子输出阻抗输入阻抗运算放大器航天器航空航天工程阳极自然對數金屬氧化物半導體場效電晶體...電場電荷集成电路耗尽层PN结SPICE掺杂 (半导体)揚聲器核反应堆模拟电路歐姆沃尔特·布喇顿波茲曼常數游離輻射漂移速度机器人指数函数戴维南定理数学模型扩散作用晶体管晶体缺陷 扩展索引 (22 更多) »

基本电荷

基本电荷(符号:e,也称元电荷),是一个质子所带的电荷,或一个电子所带的负电荷的量。它是一个基本物理常数,是原子单位和一些其它自然单位制中的电荷单位。 根据国际科学技术数据委员会所公布,基本电荷的值大约为 在高斯單位制中,它的值为 自从1909年罗伯特·密立根的油滴实验中测量出基本电荷后,人们便认为它不可再分了。1960年发现了夸克,它们的电荷为1⁄3 e和2⁄3 e,所以把“基本电荷”用来指电子的电荷便不完全正确了;然而单独的夸克至今没有探测到,都是两个以上的夸克聚集在一起,使得总电荷为基本电荷的整数倍。.

新!!: 双极性晶体管和基本电荷 · 查看更多 »

偏置

偏置(biasing), 在电子学上是指在电子电路上的多个点中,通过建立预定电压和、或电流从而设置某个适当的工作点的方法。 一个设备的工作点,称为偏压点、静态工作点,简称静点,或Q点(quiescent point)。它是在无输入信号条件下(直流工作状态下),在输出特性曲线(通常显示集电极-发射极间电压(VCE)、基极电流(IB)和集电极电流(IC)三者关系)上的一个点。这个术语通常应用于诸如晶体管放大電路的設計與连接调试过程中。静态直流通路下如果工作点设置不合理,晶体管就可能工作在截止区或者是饱和区,或會在有訊號時進入其他工作區中,从而在对交流信号放大时出现输出失真。 在电路中可以使用直流负反馈(如利用晶体管共发射极的射极电阻)来使预设的偏置状态达到稳定,避免受温度等环境因素产生较大偏差。 Category:电子工程.

新!!: 双极性晶体管和偏置 · 查看更多 »

半导体

半导体(Semiconductor)是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。 材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导电带时,电子就可以在带间任意移动而导电。一般常见的金属材料其导电带与价电带之间的能隙非常小,在室温下电子很容易获得能量而跳跃至导电带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导电带,所以无法导电。 一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 半导体通过电子传导或電洞傳导的方式传输电流。电子传导的方式与铜线中电流的流动类似,即在电场作用下高度电离的原子将多余的电子向着负离子化程度比较低的方向传递。電洞导电则是指在正离子化的材料中,原子核外由于电子缺失形成的“空穴”,在电场作用下,空穴被少数的电子补入而造成空穴移动所形成的电流(一般称为正电流)。 材料中载流子(carrier)的数量对半导体的导电特性极为重要。这可以通过在半导体中有选择的加入其他“杂质”(IIIA、VA族元素)来控制。如果我們在純矽中摻雜(doping)少許的砷或磷(最外層有5個電子),就會多出1個自由電子,這樣就形成N型半導體;如果我們在純矽中摻入少許的硼(最外層有3個電子),就反而少了1個電子,而形成一個電洞(hole),這樣就形成P型半導體(少了1個帶負電荷的原子,可視為多了1個正電荷)。.

新!!: 双极性晶体管和半导体 · 查看更多 »

双极性扩散

双极性扩散(Ambipolar diffusion)是等离子体的正负粒子在电场中由于相互作用等速远离的扩散方式。等离子体的正负粒子浓度由于扩散作用而减小至原来的\mathrm\mathsfe的所经过的距离称作双极性扩散长度(Ambipolar diffusion length)。理论上,它可以用公式表达为L_d.

新!!: 双极性晶体管和双极性扩散 · 查看更多 »

复合

--,可以指:.

新!!: 双极性晶体管和复合 · 查看更多 »

外延 (晶体)

晶(Epitaxy),是指一種用於半導體器件製造過程中,在原有晶片上長出新結晶以製成新半導體層的技術。此技術又稱外延成長(Epitaxial Growth),或指以外延技術成長出的結晶,有時可能也概指以外延技術製作的晶粒。 外延技術可用以製造矽電晶體到CMOS積體電路等各種元件,但在製作化合物半導體例如砷化鎵時,外延尤其重要。.

新!!: 双极性晶体管和外延 (晶体) · 查看更多 »

威廉·肖克利

威廉·肖克利(William Shockley,),英国出生的美国物理学家和发明家,一生共获得90多项专利。 他和约翰·巴丁、沃尔特·布喇顿共同发明了晶体管。他并因此获得1956年的诺贝尔物理奖。20世纪50-60年代,他在推动晶体管商业化的同时,造就了加利福尼亚州今天电子工业密布的硅谷地区。.

新!!: 双极性晶体管和威廉·肖克利 · 查看更多 »

安培

安培,简称安,是国际单位制中电流强度的单位,符号是A。同时它也是国际单位制中七个基本单位之一另外六个是米、开尔文、秒、摩尔、坎德拉和千克。安培是以法国数学家和物理学家安德烈-马里·安培命名的,为了纪念他在经典电磁学方面的贡献。 实际情况中,安培是对单位时间内通过导体横截面的电荷量的度量。1秒内通过横截面的电量为1库仑(个电子的电量)时,电流大小為1安培。 比安培小的電流可以用毫安、微安等單位表示。.

新!!: 双极性晶体管和安培 · 查看更多 »

安全工作区

安全工作区(Safe operating area, SOA),是指功率半导体器件功率器件是指用於大功率的器件(例如双极性晶体管、场效应管、晶闸管以及绝缘栅双极晶体管)能够按照预期正常工作而不會造成損壞时的电压電流等條件的範圍。 在半导体器件产品的手册或datasheet裡,安全工作区通常以图像的形式标明,以電晶體為例,安全工作区標示图的横坐标是 VCE(集电极-发射极电压)、纵坐标是 ICE(集电极-发射极电流),而安全工作区的范围即为图中曲线与坐标轴所包围的區域。这一邊界曲线中結合了器件的以下各項工作限制:最大电压、最大电流、與最大耗散電功率,而這些限制中也包含了對-zh-cn:结; zh-tw:接面-的温度、内部熱阻、晶粒焊线的载流能力和二次击穿二次崩潰是雙極電晶體在較高電壓工作時因熱效應而產生的一種現象。這幾項因素的考慮。 除了可依照連續工作條件畫出安全區域之外,也可以另針對脈波(例如:1mS 或 10mS)的瞬間工作條件作出脈波下的安全工作區域。.

新!!: 双极性晶体管和安全工作区 · 查看更多 »

对数

在数学中,真数 x(对于底数 )的对数是 y 的指数 y,使得 。底数  的值一定不能是1或0(在扩展到复数的复对数情况下不能是1的方根),典型的是、 10或2。数x(对于底数β)的对数通常写为 稱作為以β為底x的對數。 当x和β进一步限制为正实数的时候,对数是1个唯一的实数。 例如,因为 我们可以得出 用日常语言说,以3为底81的对数是4。.

新!!: 双极性晶体管和对数 · 查看更多 »

导纳

导纳(admittance)是电导和电纳的统称,在电力电子学中导纳定义为阻抗(impedance)的倒数,符号Y,单位是西门子,简称西(S)。.

新!!: 双极性晶体管和导纳 · 查看更多 »

小注入

小注入(low level injection)是形成PN结的一种工作条件。在N型半导体中,当注入半导体材料的非平衡电子(通过光照注入、电注入等方法引入的两种载流子——电子、空穴总是成对出现)的浓度小于平衡时导带中电子的浓度时,我们称这种方法为小注入。对于P型半导体,则需要比较非平衡空穴与平衡时的空穴的浓度。在小注入的情况下,多数载流子的复合率为线性。.

新!!: 双极性晶体管和小注入 · 查看更多 »

差分放大器

差分放大器(differential amplifier、difference amplifier,也称:差动放大器、差放),是一种将两个输入端电压的差以一固定增益放大的电子放大器。 差分放大器是一种常用的电子放大器(也称“功率放大器”,简称“功放”)和发射极耦合逻辑电路 (Emitter Coupled Logic, ECL)的输入级。若差放的两个输入为V_\mathrm^和V_\mathrm^,则它的输出V_\mathrm为: 其中A_\mathrm是差模(動)增益(differential-mode gain),A_\mathrm是共模增益(common-mode gain)。 通常以差模增益和共模增益的比值共模抑制比(common-mode rejection ratio, CMRR)衡量差分放大器消除共模信号的能力: 由上式可知,当共模增益A_\mathrm \to 0时,CMRR \to \infty。R_\mathrm越大,A_\mathrm就越低,因此共模抑制比也就越大。因此对于完全对称的差分放大器来说,其A_\mathrm.

新!!: 双极性晶体管和差分放大器 · 查看更多 »

二端口网络

二端口网络(two-port network)又称双端口网络、双口网络,是四端子网络(四端网络)的一种,是具有2个端口的电路或装置,端口与电路内部网络相连接。一个端口由2个端子组成,当这2个端子满足端口条件,即一个端子流入的电流等于另一个端子流出的电流时,则这2个端子就构成了一个端口,换句话说,也就是相同的电流从同一端口流入并流出。Gray,§3.2,第172页Jaeger,§10.5、§13.5、§13.8二端口网络的实例包括三极管的小信号模型(如混合π模型)、电子滤波器以及阻抗匹配网络。被动二端口网络的分析是互易定理的副产物,最初由洛伦兹提出。 二端口网络能将电路的整体或一部分用它们相应的外特性参数来表示,而不用考虑其内部的具体情况,这样被表示的电路就成为具有一组特殊性质的“黑箱”,从而就能抽象化电路的物理组成,简化分析。任意具有4个端子的线性电路都可以变换成二端口网络,且满足不含独立源的条件和端口条件。 描述二端口网络的参数不只有一组,常用的几组参数是分别为阻抗参数Z、导纳参数Y、混合参数h、g和传输参数,每组参数都在下文中有描述。这几组参数只能用於线性网络,因为它们导出的条件是假定任何给定的电路情况都是各种短路和开路情况的线性叠加。这几组参数通常用矩阵表示法表示,通过以下变量建立关系: 如图1所示。这些电流和电压变量在低频到中频情况下是非常有用的。在高频情况下(如微波频率),使用功率和能量变量会更合适,这时二端口电流-电压法就应该由基於S的方法代替。 请注意,四端子网络(four-terminal network)等同於四端网络(quadripole,注意与四极子(quadrupole)区分),但不等同於二端口网络,因为只有2个端子满足流入一个端子的电流等於流出另一个端子的电流时,即满足端口条件时,才能称这2个端子为一个端口,而四端子网络的端子可能无法满足端口条件。因此对於一个四端子网络,只有当连接到其内部电路的2对端子满足端口条件时,这个四端子网络才是一个二端口网络。.

新!!: 双极性晶体管和二端口网络 · 查看更多 »

二氧化硅

二氧化硅(化学式:Si)是一种酸性氧化物,对应水化物为硅酸(Si)。它从古代以来就已经被人们知道了。 二氧化硅在自然界中最常见的是石英,以及在各种生物体中。在世界的许多地方,二氧化硅是砂的主要成分。二氧化硅是最复杂和最丰富的材料家族之一,既是多种矿物质,又是被合成生产的。 值得注意的实例包括熔融石英,水晶,热解法二氧化硅,硅胶和气凝胶。 应用范围从结构材料到微电子学到食品工业中使用的成分。 二氧化硅是硅最重要的化合物,约占地壳质量的12%。自然界中二氧化硅的存在形态有结晶形和无定形两大类,统称硅石。.

新!!: 双极性晶体管和二氧化硅 · 查看更多 »

互補式金屬氧化物半導體

互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,縮寫作 CMOS;簡稱互補式金氧半),是一種積體電路的設計製程,可以在矽質晶圓模板上製出NMOS(n-type MOSFET)和PMOS(p-type MOSFET)的基本元件,由於NMOS與PMOS在物理特性上為互補性,因此被稱為CMOS。此一般的製程上,可用來製作電腦電器的靜態隨機存取記憶體、微控制器、微處理器與其他數位邏輯電路系統、以及除此之外比較特別的技術特性,使它可以用於光學儀器上,例如互補式金氧半图像传感裝置在一些高級數位相機中變得很常見。 互補式金屬氧化物半導體具有--有在電晶體需要切換啟動與關閉時才需消耗能量的優點,因此非常節省電力且發熱量少,且製程上也是最基礎而最常用的半導體元件。早期的唯讀記憶體主要就是以这种電路制作的,由於當時電腦系統的BIOS程序和参数信息都保存在ROM和SRAM中,以致在很多情况下,當人们提到「CMOS」時,实际上指的是電腦系統之中的BIOS單元,而一般的「CMOS设置」就是意指在设定BIOS的內容。.

新!!: 双极性晶体管和互補式金屬氧化物半導體 · 查看更多 »

场效应管

-- 场效应管(field-effect transistor,缩写:FET)是一种通过电场效应控制电流的电子元件。 它依靠电场去控制导电沟道形状,因此能控制半导体材料中某种类型载流子的沟道的导电性。场效应晶体管有时被称为「单极性晶体管」,以它的单载流子型作用对比双极性晶体管。由于半导体材料的限制,以及曾经双极性晶体管比场效应晶体管容易制造,场效应晶体管比双极性晶体管要晚造出,但场效应晶体管的概念却比双极性晶体管早。.

新!!: 双极性晶体管和场效应管 · 查看更多 »

医疗器械

医疗器械,又作医疗设备或医疗仪器(Medical Equipment)用于医疗工作的诊断(diagnosis)、监护(Monitoring)和治疗(treatment)。.

新!!: 双极性晶体管和医疗器械 · 查看更多 »

分子束外延

分子束外延(Molecular beam epitaxy, MBE)是使单晶材料生长的一种方法,由贝尔实验室的J.

新!!: 双极性晶体管和分子束外延 · 查看更多 »

光子

| mean_lifetime.

新!!: 双极性晶体管和光子 · 查看更多 »

光电二极管

光电二极管(photodiode)是一种能够将光根据使用方式,转换成电流或者电压信号的光探测器。 常见的传统太阳能电池就是通过大面积的光电二极管来产生电能。 光电二极管与常规的半导体二极管基本相似,只是光电二极管可以直接暴露在光源附近或通过透明小窗、光导纤维封装,来允许光到达这种器件的光敏感区域来检测光信号。许多用来设计光电二极管的二极管使用了一个PIN结,而不是一般的PN结,来增加器件对信号的响应速度。光电二极管常常被设计为工作在反向偏置状态。.

新!!: 双极性晶体管和光电二极管 · 查看更多 »

固溶体

固溶体是指溶质原子溶入溶剂晶格中而仍保持溶剂类型的合金相。通常以一种化学物质为基体溶有其他物质的原子或分子所组成的晶体,在合金和硅酸盐系统中较多见,在多原子物质中亦存在。 当溶剂的晶体结构添加溶质后可以稳定存在且保持均相,则该种混合物可以被视作溶液。 一些混合物可以在很多种浓度情况下形成固溶体,而有一些混合物根本不能形成固溶体。两种物质混合而形成固溶体的倾向是一个复杂的事情,涉及化学、晶体学及量子物理学。.

新!!: 双极性晶体管和固溶体 · 查看更多 »

BiCMOS

BiCMOS,是一种新型的半导体器件技术,它将以前两种独立的半导体器件类型——双极性晶体管(Bipolar junction transistor)和互补式金属氧化物半导体(CMOS),集成到单一集成电路上。 B.

新!!: 双极性晶体管和BiCMOS · 查看更多 »

砷化鎵

砷化鎵(化學式:GaAs)是鎵和砷兩種元素所合成的化合物,也是重要的IIIA族、VA族化合物半导体材料,用來製作微波積體電路、紅外線發光二極體、半导体激光器和太陽電池等元件。.

新!!: 双极性晶体管和砷化鎵 · 查看更多 »

硅(Silicon,台湾、香港及澳門称為--,舊訛稱為釸,中國大陸稱為--)是一种类金属元素,化学符号為Si,原子序數為14,属于元素周期表上的IVA族。 硅原子有4个外圍电子,与同族的碳相比,硅的化学性质相對稳定,活性較低。硅是极为常见的一种元素,然而它极少以單質的形式存在於自然界,而是以复杂的硅酸盐或二氧化硅等化合物形式广泛存在于岩石、砂砾、尘土之中。在宇宙储量排名中,矽位於第八名。在地壳中,它是第二丰富的元素,佔地壳总质量25.7%,仅次于第一位的氧(49.4%)。.

新!!: 双极性晶体管和硅 · 查看更多 »

空穴

空穴又称--(Electron hole),在固体物理学中指共價鍵上流失一个电子,最後在共價鍵上留下空位的現象。 一個呈電中性的原子,其正電的質子和負電的電子的數量是相等的。現在由於少了一個負電的電子,所以那裡就會呈現出一個正電性的空位——電洞。當有外面一個電子進來掉進了電洞,就會發出電磁波——光子。 電洞不是正電子,電子與正電子相遇湮滅時,所發出來的光子是非常高能的。那是兩粒子的質量所完全轉化出來的電磁波(通常會轉出一對光子)。而電子掉入電洞所發出來的光子,其能量通常只有幾個電子伏特。 半导体由于禁带较窄,电子只需不多的能量就能从价带激发到导带,从而在价带中留下空穴。周围电子可以填补这个空穴,同时在原位置产生一个新的空穴,因此实际上的电子运动看起来就如同是空穴在移动。 在半导体的制备中,要在4价的本征半导体(纯硅、锗等的晶体)的基础上掺杂。若掺入3价元素杂质(如硼、镓、铟、铝等),则可产生大量空穴,获得P型半导体,又称空穴型半导体。空穴是P型半导体中的多數载流子。 E E Category:准粒子.

新!!: 双极性晶体管和空穴 · 查看更多 »

约翰·巴丁

约翰·巴丁(John Bardeen,),美国物理学家,因發明電晶體及其相關效應;超导的BCS理论分別在1956年、1972年2次获得诺贝尔物理学奖。.

新!!: 双极性晶体管和约翰·巴丁 · 查看更多 »

热力学温标

热力学温标,又称开尔文温标、绝对温标,简称开氏溫標,凱氏溫標,是一种标定、量化温度的方法。它对应的物理量是热力学温度,或称开氏度,符号为K,为国际单位制中的基本物理量之一;对应的单位是开尔文,符号为K。热力学温标是由威廉·汤姆森,第一代开尔文男爵于1848年利用热力学第二定律的推论卡诺定理引入的。它是一个纯理论上的温标,因为它与测温物质的属性无关。 热力学温度又被称为绝对温度,是热力学和统计物理中的重要参数之一。一般所说的绝对零度指的便是0 K,对应-273.15°C。.

新!!: 双极性晶体管和热力学温标 · 查看更多 »

爾利效應

利效應(Early effect),又译厄尔利效应或譯歐萊效應,也称基区宽度调制效应,是指當雙極性電晶體(BJT)的集电极-射極電壓VCE改變,基極-集电极耗尽宽度WB-C(耗尽区大小)也會跟著改變。此變化稱為爾利效應,由詹姆斯·M·厄利(James M. Early)所發現。.

新!!: 双极性晶体管和爾利效應 · 查看更多 »

电动机

電動機(英文:Electric motor),又稱為馬--達、摩--打或電動馬--達,是一種將電能转化成机械能,並可再使用機械能產生動能,用来驱动其他装置的电氣設備。大部分的电动马达通过磁场和绕组电流,为电动机提供能量。 電動機與發電機原理基本一樣,其分別在於能量转化的方向不同:發電機是藉由負載(如水力、風力)將機械能、動能轉為電能;若沒有負載,發電機不會有電流流出。電動機和電力電子、微控器配合已形成一新學門,稱為電動機控制。.

新!!: 双极性晶体管和电动机 · 查看更多 »

电压源

电压源,即理想电压源,是从实际电源抽象出来的一种模型,在其两端总能保持一定的电压而不论流过的电流为多少,电压源具有两个基本的性质:第一,它的端电压定值U或是一定的时间函数U(t)与流过的电流无关。第二,电压源自身电压是确定的,而流过它的电流是任意的。 由于内阻等多方面的原因,理想电压源在真实世界是不存在的,但这样一个模型对于电路分析是十分有价值的。实际上,如果一个电压源在电流变化时,电压的波动不明显,我们通常就假定它是一个理想电压源。 常见实际电源的工作机理比较接近电压源,例如发电机以及蓄电池。.

新!!: 双极性晶体管和电压源 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 双极性晶体管和电子 · 查看更多 »

电子学

电子学(Electronics),作用于包括有源电子元器件(例如真空管、二极管、三极管、集成电路)和与之相关的无源器件电路的互连技术。有源器件的非线性特性和控制电子流动的能力能够放大微弱信号,并且电子学广泛应用于信息处理、通信和信号处理。电子器件的开关特性使处理数字信号成为可能。电路板、电子封装等互连技术和其他各种形式的通信基础元件完善了电路功能,并使连接在一起的元件成为一个正常工作的系统。 电子学有别于電機(Electrical)和機電(Electro-mechanical)科学与技术,电气和电机科学与技术是处理电能的产生、分布、开关、储存和转换,通过电线、电动机、发电机、电池、开关、中继器、变压器、电阻和其他无源器件从其他形式的能量转换为电能。 1897年,約瑟夫·湯姆森發現電子的存在,这是電子學的起源。早期的電子學使用真空管來控制電子的流動,但其存在成本高及體積大等缺點。现如今,大多數电子设备都使用半导体器件来控制电子。真空管至今仍有一些特殊应用,例如、阴极射线管、专业音频设备和像多腔磁控管等微波设备。 半导体器件的研究和相关技术是固体物理学的一个分支,但是电子电路的设计和搭建来解决实际问题却是电子工程的范围。本文专注于电子学的工程方面。.

新!!: 双极性晶体管和电子学 · 查看更多 »

电子迁移率

电子迁移率(electron mobility)是固体物理学中用于描述金属或半导体内部电子,在电场作用下移动快慢程度的物理量。在半导体中,另一个类似的物理量称为空穴迁移率(hole mobility)。人们常用载流子迁移率(carrier mobility)来指代半导体内部电子和空穴整体的运动快慢。.

新!!: 双极性晶体管和电子迁移率 · 查看更多 »

电流源

电流源,即理想电流源,是从实际电源抽象出来的一种模型,其端钮总能向外提供一定的电流而不论其两端的电压为多少,电流源具有两个基本的性质:第一,它提供的电流是定值I或是一定的时间函数I(t)与两端的电压无关。第二,电流源自身电流是确定的,而它两端的电压是任意的。 由于内阻等多方面的原因,理想电流源在真实世界是不存在的,但这样一个模型对于电路分析是十分有价值的。实际上,如果一个电流源在电压变化时,电流的波动不明显,我们通常就假定它是一个理想电流源。 像光电池一类的器件,工作时的特性比较接近电流源。.

新!!: 双极性晶体管和电流源 · 查看更多 »

菲克定律

菲克定律描述擴散作用,可以使用這條定律來求得擴散係數,D。定律由阿道夫·菲克於1855年推導出來。.

新!!: 双极性晶体管和菲克定律 · 查看更多 »

西門子 (單位)

西門子 (Siemens) ,是物理電路學及國際單位制中,電導、電納和導納,三種導抗的單位。 西門子的符號為S,中文簡寫時為「西」,英文全寫時應為小寫的siemens。名字出處是為了紀念德國電學家、發明家和工業家维尔纳·冯·西门子。 由於它是電阻、電抗和阻抗的單位──歐姆(Ω)的倒數,故此又與:.

新!!: 双极性晶体管和西門子 (單位) · 查看更多 »

诺贝尔物理学奖

| title.

新!!: 双极性晶体管和诺贝尔物理学奖 · 查看更多 »

贝尔实验室

贝尔实验室(Bell Laboratories),最初是内从事包括电话交换机、电话电缆、半导体等电信相关技术的研究开发机构。地点位于美國新澤西州聯合縣的Murray Hill。.

新!!: 双极性晶体管和贝尔实验室 · 查看更多 »

跨导

跨导(Transconductance)是电子元件的一项属性。电导(G)是电阻(R)的倒数;而跨导则指输出端电流的变化值与输入端电压的变化值之间的比值。通常用 gm 表示。 对于直流电,跨导可以定义为: 对于交流电小信号模型,跨导的定义相对更为简单:.

新!!: 双极性晶体管和跨导 · 查看更多 »

载流子

在物理学中,载流子(charge carrier),或簡稱載子(carrier),指可以自由移动的带有电荷的物质微粒,如电子和离子。在半导体物理学中,电子流失导致共价键上留下的空位(空穴)被视为载流子。 在电解质溶液中,载流子是已溶解的阳离子和阴离子。类似地,游离液体中的阳离子和阴离子在液体和熔融态固体电解质中也是载流子。霍尔-埃鲁法就是一个熔融电解的例子。 在等离子体,如电弧中,电离气体和汽化的电极材料中的电子和阳离子是载流子。电极汽化在真空中也可以发生,但技术上电弧在真空中不能发生,而是发生在低压电气中;在真空中,如真空电弧或真空管中,自由电子是载流子;在金属中,金属晶格中形成费米气体的电子是载流子。.

新!!: 双极性晶体管和载流子 · 查看更多 »

输出阻抗

输出阻抗(output impedance),或称内阻(internal impedance),是指电路负载从电路输出端口反着看进电路时电路所等效的阻抗。 O.

新!!: 双极性晶体管和输出阻抗 · 查看更多 »

输入阻抗

电路的输入阻抗(input impedance)是指电路从输入功率源方向“看进”电路时所等效的阻抗。如果功率源提供了已知的电压和电流,这阻抗可以通过欧姆定律求得。输入阻抗是电路的戴维寧等效,其模型是一个RL(电阻-电感)或RC(电阻-电容)组合,得到的等效电路能与原电路对外产生相同的响应效果。.

新!!: 双极性晶体管和输入阻抗 · 查看更多 »

运算放大器

运算放大器(Operational Amplifier,簡稱OP、OPA、op-amp、运放)是一种直流耦合,差模(差動模式)輸入、通常為單端輸出(Differential-in, single-ended output)的高增益(gain)電壓放大器。在这种配置下,运算放大器能产生一个比输入端电势差大数十万倍的输出电势(对地而言)。因为刚开始主要用于加法,減法等類比运算电路中,因而得名。 通常使用運算放大器時,會將其輸出端與其反相輸入端(inverting input node)連接,形成一負反馈組態。原因是運算放大器的電壓增益非常大,範圍從數百至數萬倍不等,使用負回授方可保證電路的穩定運作。但是這並不代表運算放大器不能連接成正反馈組態,相反地,在很多需要產生震盪訊號的系統中,正反饋組態的運算放大器是很常見的組成元件。 运算放大器有许多的規格参数,例如:低频增益、单位增益频率(unity-gain frequency)、相位邊限(phase margin)、功耗、输出摆幅、共模抑制比、电源抑制比、共模输入范围(input common mode range)、轉動率(slew rate)、输入偏移電壓(input offset voltage,又譯:失调电压)及雜訊等。 目前運算放大器廣泛應用於家電,工業以及科學儀器領域。一般用途的積體電路運算放大器售價不到一人民币,而現在運算放大器的設計已經非常成熟,輸出端可以直接短路到系統的接地端而不至於產生短路電流破壞元件本身。.

新!!: 双极性晶体管和运算放大器 · 查看更多 »

航天器

航天器又名--、太空船或太空飛行器,是在地球大气层以外的宇宙空间中,基本按照天体力学的规律运动的各种飞行器。航天器与自然天体的不同之处在于其可以受控改变其运行轨道或进行回收。常见的航天器包括人造卫星、空间探测器、航天飞机和各种空间站等。航天器要完成其任务必须具备发射场、运载器、航天测控系统、数据采集系统、用户站台以及回收设施等的配合。如果需要載人,更需要攜帶維生資源、生命維持系統、成員觀察訓練程序的協助。 Noun.

新!!: 双极性晶体管和航天器 · 查看更多 »

航空航天工程

#重定向 航空太空工程學.

新!!: 双极性晶体管和航空航天工程 · 查看更多 »

阳极

#重定向 陽極.

新!!: 双极性晶体管和阳极 · 查看更多 »

锗(Germanium,舊譯作鈤)是一种化学元素,它的化学符号是「Ge」,原子序数是32。它是一種灰白色类金属,有光澤,質硬,屬於碳族,化學性質與同族的錫與硅相近。在自然中,鍺共有5種同位素,原子質量數在70至76之間。它能形成許多不同的有機金屬化合物,例如四乙基鍺及異丁基鍺烷等。 即使地球表面上鍺的豐度地殼蘊含量相對较高,但由於礦石中很少含有高濃度的鍺,所以它在化學史上發現得比較晚。門捷列夫在1869年根據元素周期表的位置,預測到鍺的存在與其各項屬性,並把它稱作擬硅。克莱门斯·温克勒於1886年在一種叫硫銀鍺礦的稀有礦物中,除了找到硫和銀之外,還發現了一種新元素。儘管這種新元素的外觀跟砷和銻有點像,但是新元素在化合物中的化合比符合門捷列夫對硅下元素的預測。温克勒以他的國家——德國的拉丁語名來為這種元素命名。 鍺是一種重要的半導體材料,用於製造晶體管及各種電子裝置。主要的終端應用為光纖系統與紅外線光學(infrared optics),也用於聚合反應的催化劑,制造電子器件與太陽能電力等。現在,開採鍺用的主要礦石是閃鋅礦(鋅的主要礦石),也可以在銀、鉛和銅礦中,用商業方式提取鍺。一些鍺化合物,如四氯化鍺(GeCl4)和甲鍺烷,会刺激眼睛、皮膚、肺部與喉嚨。.

新!!: 双极性晶体管和锗 · 查看更多 »

自然對數

自然对数(Natural logarithm)是以e為底數的对数函数,標記作ln(x)或loge(x),其反函数是指數函數ex。.

新!!: 双极性晶体管和自然對數 · 查看更多 »

金屬氧化物半導體場效電晶體

金屬氧化物半導體場效電晶體(簡稱:金氧半場效電晶體;Metal-Oxide-Semiconductor Field-Effect Transistor,縮寫:MOSFET),是一種可以廣泛使用在模拟電路與数字電路的場效電晶體。金屬氧化物半導體場效電晶體依照其通道極性的不同,可分為电子占多数的N通道型與空穴占多数的P通道型,通常被稱為N型金氧半場效電晶體(NMOSFET)與P型金氧半場效電晶體(PMOSFET)。 以金氧半場效電晶體(MOSFET)的命名來看,事實上會讓人得到錯誤的印象。因為MOSFET跟英文單字「metal(金屬)」的第一個字母M,在當下大部分同類的元件裡是不存在的。早期金氧半場效電晶體閘極使用金屬作為材料,但由於多晶矽在製造工藝中更耐高溫等特點,許多金氧半場效電晶體閘極採用後者而非前者金屬。然而,隨著半導體特徵尺寸的不斷縮小,金屬作為閘極材料最近又再次得到了研究人員的關注。 金氧半場效電晶體在概念上屬於絕緣閘極場效電晶體(Insulated-Gate Field Effect Transistor, IGFET)。而絕緣閘極場效電晶體的閘極絕緣層,有可能是其他物質,而非金氧半場效電晶體使用的氧化層。有些人在提到擁有多晶矽閘極的場效電晶體元件時比較喜歡用IGFET,但是這些IGFET多半指的是金氧半場效電晶體。 金氧半場效電晶體裡的氧化層位於其通道上方,依照其操作電壓的不同,這層氧化物的厚度僅有數十至數百埃(Å)不等,通常材料是二氧化硅(SiO2),不過有些新的進階製程已經可以使用如氮氧化硅(silicon oxynitride, SiON)做為氧化層之用。 今日半導體元件的材料通常以矽為首選,但是也有些半導體公司發展出使用其他半導體材料的製程,當中最著名的例如國際商業機器股份有限公司使用硅與鍺的混合物所發展的矽鍺製程(SiGe process)。而可惜的是很多擁有良好電性的半導體材料,如砷化鎵(GaAs),因為無法在表面長出品質夠好的氧化層,所以無法用來製造金氧半場效電晶體元件。 當一個夠大的電位差施於金氧半場效電晶體的閘極與源極之間時,電場會在氧化層下方的半導體表面形成感應電荷,而這時就會形成反轉通道(inversion channel)。通道的極性與其汲極(drain)與源極相同,假設汲極和源極是n型,那麼通道也會是n型。通道形成後,金氧半場效電晶體即可讓電流通過,而依據施於閘極的電壓值不同,可由金氧半場效電晶體的通道流過的電流大小亦會受其控制而改變。.

新!!: 双极性晶体管和金屬氧化物半導體場效電晶體 · 查看更多 »

電場

電場是存在于电荷周围能传递电荷与电荷之间相互作用的物理场。在电荷周围总有电场存在;同时电场对场中其他电荷发生力的作用。观察者相对于电荷静止时所观察到的场称为静电场。如果电荷相对于观察者运动,则除静电场外,还有磁场出现。除了电荷以外,隨著時間流易而变化的磁场也可以生成电场,這種電場叫做涡旋电场或感应电场。迈克尔·法拉第最先提出電場的概念。.

新!!: 双极性晶体管和電場 · 查看更多 »

電荷

在電磁學裡,電荷(electric charge)是物質的一種物理性質。稱帶有電荷的物質為「帶電物質」。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。电荷分为两种,「正电荷」与「负电荷」。带有正电荷的物质称为「带正电」;带有负电荷的物质称为「带负电」。假若两个物质都带有正电或都带有负电,则称这两个物质「同电性」,否则称这两个物质「异电性」。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。 电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为「带电粒子」。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁交互作用。这是四种基本交互作用中的一种。.

新!!: 双极性晶体管和電荷 · 查看更多 »

集成电路

集成电路(integrated circuit,縮寫:IC;integrierter Schaltkreis)、或称微电路(microcircuit)、微芯片(microchip)、晶--片/芯--片(chip)在电子学中是一种把电路(主要包括半導體裝置,也包括被动元件等)小型化的方式,並時常制造在半导体晶圓表面上。 前述將電路製造在半导体晶片表面上的積體電路又稱薄膜(thin-film)積體電路。另有一種(thick-film)(hybrid integrated circuit)是由独立半导体设备和被动元件,集成到基板或线路板所构成的小型化电路。 本文是关于单片(monolithic)集成电路,即薄膜積體電路。 從1949年到1957年,維爾納·雅各比(Werner Jacobi)、杰弗里·杜默 (Jeffrey Dummer)、西德尼·達林頓(Sidney Darlington)、樽井康夫(Yasuo Tarui)都開發了原型,但現代積體電路是由傑克·基爾比在1958年發明的。其因此榮獲2000年諾貝爾物理獎,但同時間也發展出近代實用的積體電路的罗伯特·诺伊斯,卻早於1990年就過世。.

新!!: 双极性晶体管和集成电路 · 查看更多 »

耗尽层

耗尽层(depletion region),又称空乏區、阻挡层、势垒区(barrier region),是指PN结中在漂移运动和扩散作用的双重影响下载流子数量非常少的一个高电阻区域。耗尽层的宽度与材料本身性质、温度以及偏置电压的大小有关。.

新!!: 双极性晶体管和耗尽层 · 查看更多 »

PN结

一塊半導體晶體一側摻雜成P型半導體,另一側摻雜成N型半導體,中間二者相連的接觸面稱為PN结()。PN结是電子技術中許多元件,例如半導體二極管、雙極性晶體管的物质基础。.

新!!: 双极性晶体管和PN结 · 查看更多 »

SPICE

以積體電路為重點的模擬程式(Simulation Program with Integrated Circuit Emphasis, SPICE),是一种用于电路描述与仿真的语言与仿真器软件,用于检测电路的连接和功能的完整性,以及用于预测电路的行为。SPICE主要用于模拟电路和混合信号电路的仿真。由此我們便可以清楚地了解:SPICE這套程式原先發展的目的是為了模--擬電子系統中日益重要的積體電路。 由於積體電路不如傳統電路一般可以在麵包板(breadboard)或印刷電路板(Printed circuit board)上做實驗來驗證設計結果,所以為了提高積體電路正式生產時的良率(yield)及降低成本,勢必要在進入實際製程階段前對其電路特性做「檢查」,確保性能在規格範圍之內。.

新!!: 双极性晶体管和SPICE · 查看更多 »

掺杂 (半导体)

掺杂(doping)是半导体制造工艺中,为纯的本征半导体引入杂质,使之电气属性被改变的过程。引入的杂质与要制造的半导体种类有关。轻度和中度掺杂的半导体被称作是杂质半导体,而更重度掺杂的半导体则需考虑费米统计律带来的影响,这种情况被称为简并半导体。.

新!!: 双极性晶体管和掺杂 (半导体) · 查看更多 »

揚聲器

揚聲器(Lautsprecher;Loudspeaker;Altavoz),俗稱喇叭,是一種轉換電子信號成為聲音的换能器、電子元件,可以由一個或多個組成音響組。.

新!!: 双极性晶体管和揚聲器 · 查看更多 »

核反应堆

核反应堆(nuclear reactor)是一种启动、控制并维持核裂变或核聚變链式反应的装置。相对于核武爆炸瞬间所发生的失控链式反应,在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。 核反应堆有许多用途,当前最重要的用途是产生热能,用以代替其他燃料加热水,产生蒸汽发电或驱动航空母舰等设施运转。一些反应堆被用来生产为医疗和工业用途的同位素,或用于生产武器级钚。一些反应堆运行仅用于研究。当前全部商业核反应堆都是基于核裂变的。今天,在世界各地的大约30个国家里有被用于发电的大约450个核反应堆。.

新!!: 双极性晶体管和核反应堆 · 查看更多 »

模拟电路

模拟电路(analogue electronics,美式:analog electronics)是涉及连续函数形式模拟信号的电子电路,与之相对的是数字电路,后者通常只关注0和1两个逻辑电平。“模拟”二字主要指电压(或电流)对于真实信号成比例的再现,它最初来源于希腊语词汇ανάλογος,意思是“成比例的”。.

新!!: 双极性晶体管和模拟电路 · 查看更多 »

歐姆

欧姆是電阻值的計量單位(在中国大陆简称为「欧」);在國際單位制中是由電流所推導出的一種單位,其記號是希臘字母Ω(唸作Ohm)。 为了纪念德國物理學家格奥尔格·欧姆而命名;他定義了電壓和電流之間的關係,1A的電流通過1\Omega的電阻會產生1V的壓降,這個關係式也稱為歐姆定律。.

新!!: 双极性晶体管和歐姆 · 查看更多 »

沃尔特·布喇顿

#重定向 沃尔特·布拉顿.

新!!: 双极性晶体管和沃尔特·布喇顿 · 查看更多 »

波茲曼常數

波茲曼常數(Boltzmann constant)是有關於溫度及能量的一個物理常數,常用 k 或 k_B 表示,以纪念奧地利物理學家路德維希·波茲曼在統計力學领域做出的重大貢獻。數值及單位為:(SI制,2014 CODATA 值) 括號內為誤差值,原則上玻尔兹曼常數為導出的物理常數,其值由其他物理常數及絕對溫度單位的定義所決定。 氣體常數 R 是波茲曼常數 k 乘上阿伏伽德罗常數 N_A: k.

新!!: 双极性晶体管和波茲曼常數 · 查看更多 »

游離輻射

游離輻射(ionizing radiation)是指波長短、頻率高、能量高的射線(粒子或波的双重形式)。輻射可分為游離輻射和非游離輻射,游離輻射可以從原子或分子裡面電離過程(Ionization)中作用出至少一個電子。反之,非游離輻射則不行。游離能力,決定於射線(粒子或波)所帶的能量,而不是射線的數量。如果射線沒有帶有足夠游離能量的話,大量的射線並不能夠導致游離。.

新!!: 双极性晶体管和游離輻射 · 查看更多 »

漂移速度

漂移速度(Drift Velocity),是指一個粒子(例如電子)因為電場的關係而移動的平均速度。 實際上,當沒有電場存在,導體中的電子以费米速度作隨機移動。 電場使這個隨機運動過程獲得單一方向的淨速度。 因為電流和漂移速度成正比,經多番推導後可得出其量值亦和電場量值成正比例,當中的推導過程可以歐姆定律解釋。 漂移速度可以用以下公式表達:.

新!!: 双极性晶体管和漂移速度 · 查看更多 »

机器人

机器人(Robot)包括一切模拟人类行为或思想與模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,機器人指能自動執行任务的人造機器裝置,用以取代或协助人类工作,一般會是機電裝置,由電腦程式或是電子電路控制。 機器人的範圍很廣,可以是自主或是半自主的,可以從本田技研工業的ASIMO或是的等擬人機器人到工业机器人,也包括多台一起動作的,其至是奈米機器人。藉由模仿逼真的外觀及自動化的動作,理想中的高仿真機器人是高级整合控制论、机械电子、计算机与人工智能、材料学和仿生学的产物,目前科学界正在向此方向研究开发。有关机器人的话题,常见于科幻作品中。 機器人學是有關機器人設計、組裝、運作及應用的技術研究,以及控制機器人的電腦系統、感測器回授以及信息處理等。機器人可以代替人類在一些危險的環境或是製造程序中工作,或是在外貌、行為或認知上取代人類。許多機器的概念都來自自然界,因此有仿生機器人學的出現。 在工業時代機械技術提昇後,像自動化設備、遙控甚至無線遙控也日益成熟,電子學的進展成為機器人發展的動力。第一個電子式自動機是於1948年在英國的布里斯托尔由William Grey Walter發明,第一個數位化,由電腦控制的自動機是在1954年由George Devol發明,命名為,後續在1961年賣給奇異電氣,用在紐澤西州的工廠中,用來將壓鑄設備中的熱金屬上移。 機器人可以作一些重複性高或是危險,人類不想做的工作,也可以做一些因為尺寸限制,人類無法作的工作,甚至是像外太空或是深海中,不適人類生存的環境。 社會上對越來越多的機器人及其角色有些疑慮,機器人因為在越來越多方面可以取代人類,因此被認為是增加失業人口的主因之一 。戰爭中使用的機器人也有道德上的疑慮。機器人自主的可能性及其影響是科幻小說的主題之一,以後也可能變成實際會發生的問題。.

新!!: 双极性晶体管和机器人 · 查看更多 »

指数函数

指数函数(Exponential function)是形式為b^x的數學函数,其中b是底數(或稱基數,base),而x是指數(index / exponent)。 現今指數函數通常特指以\mbox為底數的指數函數(即\mbox^x),為数学中重要的函数,也可寫作\exp(x)。这里的\mbox是数学常数,也就是自然对数函数的底数,近似值为2.718281828,又称为欧拉数。 作为实数变量x的函数,y.

新!!: 双极性晶体管和指数函数 · 查看更多 »

戴维南定理

戴维南定理(Thevenin's theorem)又称等效电压源定律,是由法国科学家L·C·戴维南于1883年提出的一个电学定理。由於早在1853年,亥姆霍兹也提出过本定理,所以又称亥姆霍兹-戴维南定理。其内容是:一个含有独立電壓源、獨立電流源及電阻的线性网络的兩端,就其外部型態而言,在電学上可以用一个独立电压源V和一个松弛二端网络的串联電阻组合来等效。在單頻交流系統中,此定理不仅適用於電阻,也適用於廣義的阻抗。 此定理陳述出一個具有電壓源及電阻的電路可以被轉換成戴維南等效電路,這是用於電路分析的簡化技巧。戴維南等效電路對於電源供應器及電池(裡面包含一個代表內阻抗的電阻及一個代表電動勢的電壓源)來說是一個很好的等效模型,此電路包含了一個理想的電壓源串聯一個理想的電阻。.

新!!: 双极性晶体管和戴维南定理 · 查看更多 »

数学模型

數學模型是使用數學概念和語言來对一個系統的描述。建立数学模型的过程叫做数学建模。數學模型不只用在自然科學(如物理、生物學、地球科學、大氣科學)和工程学科(如计算机科学,人工智能)上,也用在社會科學(如經濟學、心理學、社會學和政治科學)上;其中,物理學家、工程師、统计学家、運籌學分析家和經濟學家們最常使用數學模型。模型会帮助解释一个系统,研究不同组成部分的影响,以及对行为做出预测。 Eykhoff定義「數學模型」為「對一個現存(或被建構的)系統本質的表述,以能以有用的形式表示出此系統的知識來。」 數學模型可以有許多種的形式,不只限定在動態系統、概率模型、微分方程或賽局模型而已。不同的模型可能有相同的形式,同一個模型也可能包含了不同的抽象結構。.

新!!: 双极性晶体管和数学模型 · 查看更多 »

扩散作用

扩散作用是一个基于分子热运动的输运现象,是分子通过布朗运动从高浓度区域向低浓度区域的输运的过程。它是趋向于热平衡态的驰豫过程,是熵驱动的过程。菲克定律是扩散作用的近似描述,实际过程是从高化学势区域向低化学势区域的转移。扩散作用的速率和混合物的浓度梯度一般不太大,因此通常可以用近平衡态热力学理论进行处理。 扩散作用有多种微观解释,较有影响力的是分子动理论的解释和随机行走模型的解释。.

新!!: 双极性晶体管和扩散作用 · 查看更多 »

晶体管

晶体管(transistor),早期音譯為穿細絲體,是一种-zh-cn:固体; zh-tw:固態;--zh-cn:半导体器件; zh-tw:半導體元件;-,可以用于放大、开关、稳压、信号调制和许多其他功能。在1947年,由約翰·巴丁、沃爾特·布喇頓和威廉·肖克利所發明。當時巴丁、布喇頓主要發明半導體三極體;肖克利則是發明PN二極體,他們因為半導體及電晶體效應的研究獲得1956年諾貝爾物理獎。 電晶體由半導體材料組成,至少有三個對外端點(稱為極),(C)集極、(E)射極、(B)基極,其中(B)基極是控制極,另外兩個端點之間的伏安特性關係是受到控制極的非線性電阻關係。晶体管基于输入的電流或电压,改變輸出端的阻抗 ,從而控制通過輸出端的电流,因此晶體管可以作為電流開關,而因為晶体管輸出信號的功率可以大於輸入信號的功率,因此晶体管可以作為电子放大器。.

新!!: 双极性晶体管和晶体管 · 查看更多 »

晶体缺陷

晶体缺陷(crystallographic defect)是指晶体结构中周期性的排列规律被打破的情况。P.

新!!: 双极性晶体管和晶体缺陷 · 查看更多 »

重定向到这里:

BJTH參數模型H參數等效模型H参数微变等效电路H参数模型双极型晶体管双极性结型晶体管雙載子電晶體

传出传入
嘿!我们在Facebook上吧! »