徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

B2FH

指数 B2FH

B2FH理论是弗雷德·霍伊尔和伯比奇夫妇(傑佛瑞·伯比奇和玛格丽特·伯比奇)、威廉·福勒四人提出關於恆星核合成的一篇著名論文。該篇論文於1957年發表於期刊《现代物理评论》,是恆星物理學的指標性論文。該論文的正式標題為《Synthesis of the Elements in Stars》(恆星中的元素合成),但是該文章常以四人姓氏開頭字母簡稱為「B2FH」。 該篇論文全面性的概括和分析了幾個可能是自然界中元素合成的關鍵步驟和元素相對豐度,並且被認為是今日恆星核合成理論的由來。.

37 关系: 加州理工學院卡尔·冯·魏茨泽克大爆炸天体物理学天文物理期刊太初核合成威廉·福勒帕萨迪纳 (加利福尼亚州)乔治·伽莫夫弗雷德·霍伊尔化學元素豐度化學演化傑佛瑞·伯比奇皇家天文學會月報现代物理评论碳氮氧循環科学 (期刊)紅移物理评论诺贝尔物理学奖質子-質子鏈反應赫羅圖量子力学金屬量P-過程R-過程S-過程恆星核合成核合成核素圖核聚变汉斯·贝特

加州理工學院

#重定向 加利福尼亞理工學院.

新!!: B2FH和加州理工學院 · 查看更多 »

卡尔·冯·魏茨泽克

卡尔·弗雷德里希·冯·魏茨泽克男爵(Carl Friedrich Freiherr von Weizsäcker,),德国物理学家、哲学家。他是第二次世界大战期间由维尔纳·海森堡领导的德国核研究小组成员中最长寿的。.

新!!: B2FH和卡尔·冯·魏茨泽克 · 查看更多 »

大爆炸

--又稱大--靂(Big Bang),是描述宇宙的源起與演化的宇宙學模型,这一模型得到了当今科学研究和觀測最廣泛且最精確的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的。根据2015年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.99 ± 0.21亿年,并经过不断的到达今天的状态。 大爆炸这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如宇宙學原理假设空间的和各向同性)。1922年,苏联物理学家亚历山大·弗里德曼用广义相对论描述了流体,从而给出了这一模型的场方程。1929年,美国物理学家埃德温·哈勃通过观测发现,从地球到达遥远星系的距离正比于这些星系的红移,从而推导出宇宙膨胀的观点。1927年时勒梅特通过求解弗里德曼方程已经在理论上提出了同样的观点,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星系团在视線速度上都在远离我们这一观察点,并且距离越远退行视速度越大 。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去曾经距离很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个密度极高且温度极高的状态,大型粒子加速器在类似条件下所进行的实验结果则有力地支持了这一理论。然而,由于当前技术原因,粒子加速器所能达到的高能范围还十分有限,因而到目前为止,还没有证据能够直接或间接描述膨胀初始的极短时间内的宇宙状态。从而,大爆炸理论还无法对宇宙的初始状态作出任何描述和解释,事实上它所能描述并解释的是宇宙在初始状态之后的演化图景。当前所观测到的宇宙中氢元素的丰度,和理论所预言的宇宙早期快速膨胀并冷却过程中,最初的几分钟内通过核反应所形成的这些元素的理论丰度值非常接近,定性并定量描述宇宙早期形成的氢元素丰度的理论被称作太初核合成。 大爆炸一词首先是由英国天文学家弗雷德·霍伊尔所采用的。霍伊尔是与大爆炸对立的宇宙学模型——穩態學說的倡导者,他在1949年3月BBC的一次广播节目中将勒梅特等人的理论称作“这个大爆炸的观点”。虽然有很多通俗轶事记录霍伊尔这样讲是出于讽刺,但霍伊尔本人明确否认了这一点,他声称这只是为了着重说明这两个模型的显著不同之处。霍伊尔后来为恒星核合成的研究做出了重要贡献,这是恒星内部通过核反应利用氢元素制造出某些重元素的途径。1964年发现的宇宙微波背景辐射是支持大爆炸确实发生的重要证据,特别是当测得其频谱从而绘制出它的黑体辐射曲线之后,大多数科学家都开始相信大爆炸理论了。.

新!!: B2FH和大爆炸 · 查看更多 »

天体物理学

天體物理學,又稱「天文物理學」,是研究宇宙的物理學,這包括星體的物理性質(光度,密度,溫度,化學成分等等)和星體與星體彼此之間的交互作用。應用物理理論與方法,天體物理學探討恆星結構、恆星演化、太陽系的起源和許多跟宇宙學相關的問題。由於天體物理學是一門很廣泛的學問,天文物理學家通常應用很多不同的學術領域,包括力學、電磁學、統計力學、量子力學、相對論、粒子物理學等等。由於近代跨學科的發展,與化學、生物、歷史、計算機、工程、古生物學、考古學、氣象學等學科的混合,天體物理學目前大小分支大約三百到五百門主要專業分支,成為物理學當中最前沿的龐大領導學科,是引領近代科學及科技重大發展的前導科學,同時也是歷史最悠久的古老傳統科學。 天體物理實驗數據大多數是依賴觀測電磁輻射獲得。比較冷的星體,像星際物質或星際雲會發射無線電波。大爆炸後,經過紅移,遺留下來的微波,稱為宇宙微波背景輻射。研究這些微波需要非常大的無線電望遠鏡。 太空探索大大地擴展了天文學的疆界。太空中的觀測可讓觀測結果避免受到地球大氣層的干擾,科學家常透過使用人造衛星在地球大氣層外進行紅外線、紫外線、伽瑪射線和X射線天文學等電磁波波段的觀測實驗,以獲得更佳的觀測結果。 光學天文學通常使用加裝電荷耦合元件和光譜儀的望遠鏡來做觀測。由於大氣層的擾動會干涉觀測數據的品質,故於地球上的觀測儀器通常必須配備調適光學系統,或改由大氣層外的太空望遠鏡來觀測,才能得到最優良的影像。在這頻域裏,恆星的可見度非常高。藉著觀測化學頻譜,可以分析恆星、星系和星雲的化學成份。 理論天體物理學家的工具包括分析模型和計算機模擬。天文過程的分析模型時常能使學者更深刻地理解箇中奧妙;計算機模擬可以顯現出一些非常複雜的現象或效應其背後的機制。 大爆炸模型的兩個理論棟樑是廣義相對論和宇宙學原理。由於太初核合成理論的成功和宇宙微波背景輻射實驗證實,科學家確定大爆炸模型是正確無誤。最近,學者又創立了ΛCDM模型來解釋宇宙的演化,這模型涵蓋了宇宙暴胀(cosmic inflation)、暗能量、暗物質等等概念。 理論天體物理學家及實測天體物理學家分別扮演這門學科當中的兩大主力研究者,兩者專業分工。理論天體物理學家通常扮演大膽假設的研究者,理論不斷推陳出新,對於數據的驗證關心程度較低,假設程度太高時,經常會演變成偽科學,一般都是天體物理學研究者當中的激進人士。實測天體物理學家通常本身精通理論天體物理,在相當程度上來說也有能力自行發展理論,扮演小心求證的研究者,通常是物理實證主義的奉行者,只相信觀測數據,經常對理論天體物理學所提出的假說進行證偽或證實的活動,一般都是天體物理學研究者當中的保守人士。.

新!!: B2FH和天体物理学 · 查看更多 »

天文物理期刊

天文物理期刊(The Astrophysical Journal)是在天文学及天体物理学領域重要的研究期刊,于1895年創刊,至2008年底都由美國芝加哥大學出版社發行;2009年1月起改由英國物理學會出版社發行。編輯部附屬美國天文學會之下,每月出版三冊,刊載的內容主要為最新的天文物理發展、發現、及学说。.

新!!: B2FH和天文物理期刊 · 查看更多 »

太初核合成

太初核合成(BBN)是物理宇宙學的一個概念,指宇宙在早期階段產生H-1(最常見,也是最輕的氫同位素,只有單獨的一個質子)之外原子核的過程。太初核合成在大霹靂之後只經歷了幾分鐘,相信與一些較重的同位素的形成,如氘(H-2或D)、氦的同位素(He-3和He-4)、鋰的同位素(Li-6和Li-7)的形成有密切的關係。除了這些穩定的原子核之外,還有一些不穩定的放射性同位素在太初核合成之際也形成了:氚(H-3)、鈹(Be-7和Be-8)。這些不穩定的同位素不是蛻變就是融合成前述其它的穩定同位素。(所有這些原子核通常表示為NX,此處X.

新!!: B2FH和太初核合成 · 查看更多 »

威廉·福勒

威廉·福勒(William Fowler,),美国天体物理学家,1979年获太平洋天文学会布鲁斯奖,1983年获瑞典皇家科学院诺贝尔物理学奖。.

新!!: B2FH和威廉·福勒 · 查看更多 »

帕萨迪纳 (加利福尼亚州)

帕萨迪纳 (Pasadena, California)是美国加利福尼亚州南部洛杉矶縣的一座城市,位於洛杉磯东北部,因其玫瑰碗和每年的玫瑰花车游行而闻名。2013年人口估计为139,731人,全美排名第183位,也是洛杉矶县第9大城市。帕萨迪纳是著名的理工科院校加州理工学院的所在地。 帕萨迪纳是美剧《生活大爆炸》(The Big Bang Theory)故事发生所在地,其四位男主角均供职于加州理工学院,根据网友从视频截图和谷歌地图的分析来看,主角谢尔顿·库珀和莱纳德·霍夫斯塔德的公寓住址为 Madison Luxury Apartments, 215 South Madison Avenue, Pasadena, CA.

新!!: B2FH和帕萨迪纳 (加利福尼亚州) · 查看更多 »

乔治·伽莫夫

乔治·伽莫夫(George Gamow,),出生名喬治·安東諾維奇·伽莫夫(Georgiy Antonovich Gamov),美籍俄裔物理学家、宇宙學家、科普作家,热大爆炸宇宙学模型的创立者,也是最早提出遺傳密碼模型的人。.

新!!: B2FH和乔治·伽莫夫 · 查看更多 »

弗雷德·霍伊尔

弗雷德·霍伊尔爵士,FRS(Sir Fred Hoyle,),生於英国英格蘭约克郡宾利,英国天体物理学家。他是最早將恆星核合成過程加以理論化的物理學者之一。.

新!!: B2FH和弗雷德·霍伊尔 · 查看更多 »

化學元素豐度

化學元素豐度(Abundance of the chemical elements)是在測量上與所有元素相比較所得到含量多寡的比值。豐度可以是質量的比值或是莫耳數(氣體的原子數量比值或是分子數量比值),或是容積上的比值。在混合的氣體中測量氣體容積上的比值是最常用於表示豐度的方法,對混合的理想氣體(相對於是低密度和低壓的氣體)這與莫耳數是相當一致的。 例如,氧在水中的質量比是89%,因為這是水的質量和氧的質量的比值,但是氧在水中的莫耳比值只有33%,因為在水的莫耳數中只有三分之一是氧原子。在整個宇宙中,和在如同木星這樣的巨大的氣體行星中,氫和氦在質量上的豐度比值分別相對是74%和23-25%,但是摩爾(原子)比值卻高達92%和8%。但是,因為氫是雙原子分子,而氦在木星外層的大氣環境下只是單原子分子,以分子的摩爾數來比較,在木星大氣層中氫的豐度是86%,而氦的豐度是13%。 在本文中所提到的豐度,多數都是質量百分比的豐度。.

新!!: B2FH和化學元素豐度 · 查看更多 »

化學演化

化學演化論或化學進化論可指.

新!!: B2FH和化學演化 · 查看更多 »

傑佛瑞·伯比奇

傑佛瑞·羅納德·伯比奇,FRS(Geoffrey Ronald Burbidge,),英國天文學家,最後工作地點是美國聖地牙哥加利福尼亞大學。妻子是天文學家瑪格麗特·伯比奇。.

新!!: B2FH和傑佛瑞·伯比奇 · 查看更多 »

皇家天文學會月報

皇家天文學會月報(Monthly Notices of the Royal Astronomical Society,MNRAS)是世界上最主要的天文學和天文物理學領域同行評審的學術期刊之一。出刊於1827年,發表作為天文等相關領域原創研究的論文或事件通報。另外,該期刊實際上並非每月出刊,所發表的文章也不僅限於英國皇家天文學會的訊息 。.

新!!: B2FH和皇家天文學會月報 · 查看更多 »

现代物理评论

代物理评论(Reviews of Modern Physics),美国物理学会所属的物理学类刊物,创刊于1929年。杂志使用英语。ISSN号为0034-6861。该杂志第一期的第一篇论文是雷蒙德·伯奇的论文"Probable Values of the General Physical Constants"。.

新!!: B2FH和现代物理评论 · 查看更多 »

碳氮氧循環

碳氮氧循環(CNO cycle),有時也稱為貝斯-魏茨澤克-循環(Bethe-Weizsäcker-cycle),是恆星將氫轉換成氦的兩種過程之一,另一種過程是質子-質子鏈反應。 在質量像太陽或更小些的恆星中,質子-質子鏈反應是產生能量的主要過程,太陽只有1.7%的4氦核是經由碳氮氧循環的過程產生的,但是理論上的模型顯示更重的恆星是以碳氮氧循環為產生能量的主要來源。碳氮氧循環的過程是由卡尔·冯·魏茨泽克和漢斯·貝特 在1938年和1939年各別獨立提出的。 碳氮氧循環的主要反應如下"Introductory Nuclear Physics", Kenneth S. Krane, John Wiley & Sons, New York, 1988, p.537: 這個循環的淨效應是4個質子成為一個α粒子、2個正電子(和電子湮滅,以γ射線的形式釋放出能量)和2個攜帶著部分能量逃逸出恆星的微中子。碳、氮、和氧核在循環中擔任催化劑並且再生。 有一個較小分支的反應,在太陽核心中發生的只佔了0.04%的量,最後的產物不是12碳和4氦,而是16氧和一個光子,取代進行的過程如下: 同樣的,碳、氮、和氧在主要的分支,而在較小分支上的氟也僅僅是穩定狀態的催化劑,不會在恆星內累積。 碳氮氧循環的主要分支稱為碳氮氧-I,小的分支稱為碳氮氧-II,在更重的恆星內還有碳氮氧-III和碳氮氧-IV兩個次要的主分支,它們開始於碳氮氧-II反應的最後階段,結果是以18氧和γ射線取代原本的14氮和氦核: 和 氧氟循環: 此處,所有參與反應的"催化劑"(碳、氮、氧的核)數量都是守恆的,而在恆星演化中核的相對比例是會改變的。無論最初的結構是如何,當這個循環在平衡狀態下,12碳/13碳核的比例是3.5,而14氮成為數量最多的核。在恆星的演化中,對流會將碳氮氧循環的產物從恆星的內部帶到表面並混合,改變觀測到的恆星成分。在紅巨星,相較於主序星,能觀測到較低比例的12碳/13碳和12碳/14氮,這些都可以證明核融合在恆星內部進行能量的世代交替。.

新!!: B2FH和碳氮氧循環 · 查看更多 »

科学 (期刊)

《科学》(Science)是美国科学促进会出版的一份学术期刊,為全世界最权威的学术期刊之一。 該期刊的主要關注點是出版重要的原創性科學研究和科研綜述,此外《科學》也出版科學相關的新聞、关于科技政策和科学家感兴趣的事务的观点。不像大多數科學期刊專注於某一特定領域,《科學》和它的對手《自然》期刊涵蓋了所有學科。根據期刊引證報告,《科學》在2014年的影響因子為33.611。 雖然《科學》是美國科學促進會的期刊,但發表文章并不需要美国科学促进会的會員資格。《科學》收到世界各地作者的論文。發表文章的競爭極其激烈,因為發表在這樣高引用率期刊上文章可以為作者吸引關注并有助於其職業發展。但是提交給編輯的文章只有不到10%會被接受發表,所有的研究文章在見刊之前皆須同行評審。.

新!!: B2FH和科学 (期刊) · 查看更多 »

紅移

在物理學领域,紅移(Redshift)是指電磁輻射由於某种原因導致波长增加、頻率降低的现象,在可見光波段,表现为光谱的谱线朝紅端移動了一段距离。相反的,電磁輻射的波長变短、频率升高的现象则被稱為藍移。紅移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步加深,任何电磁辐射的波長增加都可以称为紅移。对於波长较短的γ射線、X-射線和紫外線等波段,波长变长确实是波谱向红光移动,“红移”的命名并无问题;而对於波长较长的紅外線、微波和無線電波等波段,尽管波长增加實際上是遠離红光波段,这种现象还是被称为“红移”。 當光源移動遠離觀測者时,观测者观察到的电磁波谱會發生紅移,这类似于聲波因为都卜勒效應造成的頻率變化。這樣的紅移现象在日常生活中有很多應用,例如都卜勒雷達、雷達槍,在天體光譜學裏,人们使用都卜勒紅移測量天體的物理行為 。 另一種紅移稱為宇宙學紅移,其機制為。這機制說明了在遙遠的星系、類星體,星系間的氣體雲的光谱中觀察到的红移现象,其紅移增加的比例與距離成正比。這種關係为宇宙膨脹的观点提供了有力的支持,比如大霹靂宇宙模型。 另一種形式的紅移是引力紅移,其為一種相對論性效應,當電磁輻射傳播遠離引力場時會觀測到這種效應;反過來說,當電磁輻射傳播接近引力場時會觀測到引力藍移,其波長變短、频率升高。 红移的大小由“红移值”衡量,红移值用Z表示,定义为: 这裡\lambda_0\,是谱线原先的波长,\lambda\,是观测到的波长,f_0\,是谱线原先的频率,f\,是观测到的频率。.

新!!: B2FH和紅移 · 查看更多 »

物理评论

物理评论(Physical Review,简称Phys.),为美国的一个学术性期刊,创办于1893年。该杂志刊登物理学各方面的最新研究成果以及科学评论等文章。该杂志由美国物理学会出版发行。 物理评论分为ABCDE等分刊。.

新!!: B2FH和物理评论 · 查看更多 »

诺贝尔物理学奖

| title.

新!!: B2FH和诺贝尔物理学奖 · 查看更多 »

質子-質子鏈反應

#重定向 質子﹣質子鏈反應.

新!!: B2FH和質子-質子鏈反應 · 查看更多 »

鈾(Uranium)是一種銀白色金屬化學元素,屬於元素週期表中的錒系,化學符號為U,原子序為92。每個鈾原子有92個質子和92個電子,其中6個為價電子。鈾具有微放射性,其同位素都不稳定,并以鈾-238(146個中子)和鈾-235(143個中子)最为常见。鈾在天然放射性核素中原子量第二高,仅次于钚。其密度比鉛高出大約70%,比金和鎢低。天然的泥土、岩石和水中含有百萬分之一至百萬分之十左右的鈾。採礦工業從瀝青鈾礦等礦物中提取出鈾元素。 自然界中的鈾以三种同位素的形式存在:鈾-238(99.2739至99.2752%)、鈾-235(0.7198至0.7202%)、和微量的鈾-234(0.0050至0.0059%)。鈾在衰變的時候釋放出α粒子。鈾-238的半衰期為44.7億年,鈾-235的則為7.04億年,因此它们被用于估算地球的年齡。 鈾獨特的核子特性有很大的實用價值。鈾-235是唯一自发裂變的同位素。鈾-238在快速中子撞擊下能夠裂變,屬於增殖性材料,即能在核反應爐中經核嬗變成為可裂變的鈈-239。鈾-233也是一種用於核科技的可裂變同位素,可從自然釷元素製成。鈾-238自發裂變的機率极低,快中子撞擊可诱导其裂變;鈾-235和233可被慢中子撞击而裂变,如果其质量超过临界质量,就都能夠維持核連鎖反應,在核反应过程中的微小质量损失会转化成巨大的能量。这一特性使它们可用于生产核裂变武器与核能发电。耗尽后的鈾-235发电原料被称为貧鈾(含238U),可用做钢材添加剂,製造贫铀弹和裝甲。.

新!!: B2FH和鈾 · 查看更多 »

赫羅圖

赫羅圖(英语:Hertzsprung–Russell diagram,简写为H–R diagram或HR diagram或HRD)是丹麥天文學家赫茨普龙及由美國天文學家罗素分別于1911年和1913年各自獨立提出的。後來的研究發現,這張圖是研究恆星演化的重要工具,因此把這樣一張圖以當時兩位天文學家的名字來命名,稱為赫羅圖。赫羅圖是恒星的光譜類型與光度之關係圖,赫羅圖的縱軸是光度或絕對星等,而橫軸則是光譜類型或恒星的表面溫度,从左向右遞減。恒星的光譜型通常可大致分為O.B.A.F.G.K.M七种,有一個簡單的英文口訣便于记诵这七种类型,即"Oh Be A Fine Girl(Guy).

新!!: B2FH和赫羅圖 · 查看更多 »

铁是一种化学元素,它的化学符号是Fe,它的原子序数是26,它的相对原子质量是56。它是过渡金属的一种。铁是最常用的金属,是地球外核及內核的主要成份,是地殼上豐度第四高的元素和第二高的金屬。鐵常出現在类地行星中,因為鐵是高質量恆星核融合後的產物,鎳-56是放熱核融合反應的最後一個產物,之後會衰變成最常見的鐵同位素。 铁和其他8族元素相同,其氧化態範圍很廣,由−2到+6,但其中+2和+3是最常見的氧化態。在流星体及低氧的環境下,鐵會以单质的形式存在,但是鐵很容易和氧氣和水反應。鐵的表面是有光澤的銀灰色,但在空氣中鐵會反應生成水合的氧化鐵,一般稱為铁锈。許多金屬在氧化後會形成钝化的氧化層,保護內部的金屬不被氧化,但氧化鐵的密度較鐵要低,因此氧化鐵會剝落,無法保護內部的鐵不受腐蝕。.

新!!: B2FH和铁 · 查看更多 »

锂(Lithium)是一种化学元素,其化学符号Li,原子序数为3,三个电子中两个分布在K层,另一个在L层。锂是碱金属中最轻的一种。锂常呈+1或0氧化态,是否有-1氧化态則尚未得到证实。但是锂和它的化合物并不像其他的碱金属那么典型,因为锂的电荷密度很大并且有稳定的氦型双电子层,使得锂容易极化其他的分子或离子,自己却不容易受到极化。这一点就影响到它和它的化合物的稳定性刘翊纶任德厚《无机化学丛书》第一卷 北京:科学出版社289-354页1984年。锂的英文名称来源于希腊文lithos,意为“石头”。其中文名则来源于“Lithos”的第一个音节发音“里”,因为是金属,在左方加上部首“钅”。.

新!!: B2FH和锂 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: B2FH和量子力学 · 查看更多 »

金屬量

金屬量是天文學和物理宇宙學中的一個術語,它是指恒星之內除了氫和氦元素之外,其他的化學元素所占的比例(這個術語不同於一般所認知的“金屬”,因為在宇宙中氫和氦的組成量占了壓倒性的大數量,天文學家將所有更重的元素都視為金屬。) 。例如,碳化合物含量較多的星雲被稱為“富金屬”,但在其他的場合都不會將碳當成金屬。 一個天體的金屬量也許可以提供年齡的訊息。當宇宙剛形成時,依據大霹靂的理論,它幾乎完全都是氫原子,經由太初核合成,創造出相當大比例的氦和微量跡證的鋰。最初的恒星,被認為是第三星族星,完全不含任何金屬。這些恒星的質量是難以置信的巨大,因此在短促的恒星演化中經由核融合創造出週期表內比鐵輕的元素,然後經由壯觀的超新星將元素散佈在宇宙中。雖然,它們存在於主流的宇宙起源模型,但直至2007年,仍未發現第三星族星。下一代的恒星於第一代恒星死亡釋出的物質中创造出来,被觀測到最老的恒星,被認為是第二星族星,有非常少量的金屬;後續世代出生的恒星,因由先前世代的富含金屬的塵埃中创生出来,金屬含量越來越豐富。而當這些恒星死亡時,它們會將更豐富的金屬,經由行星狀星雲或超新星散佈到外面的雲氣中,讓新誕生的恒星有更豐富的金屬。最年輕的恒星,包括我們的太陽,含有的金屬最豐富的恒星,被認為是第一星族星。 橫跨銀河系,金屬量在銀心是最高的,並向外逐漸遞減。在群星之間的金屬量梯度隨恒星的密度變化:在星系的中心有最多的恒星,隨著時間的過去,有越來越多的金屬回到星際物質內,並且成為新恒星的原料。由相似的機制,較大的星系相較於較小的星系,也會有較高的金屬量。在兩個環繞著銀河系的小不規則星系,麥哲倫雲的例子中,大麥哲倫星系的金屬量是銀河系的40%,小麥哲倫星系的金屬量是銀河系的10%。.

新!!: B2FH和金屬量 · 查看更多 »

P-過程

P-過程是發生在超新星的核心塌縮時進行的核合成(參見超新星核合成),對比鐵重且富含質子原子核的產生有不可忽視的貢獻。.

新!!: B2FH和P-過程 · 查看更多 »

R-過程

R-過程,或稱為快中子捕獲過程,是在核心發生塌縮的超新星(參考超新星核合成)中創造富含中子且比鐵重的元素的程序,並創造了大約一半的數量。R-過程需要以鐵為種核進行連續的快中子捕獲,或是短程的R-過程。另一種居主導地位產生重元素的機制為S-過程,也就是通過慢中子捕獲進行核合成,主要發生在AGB星,而這兩種過程在產生比鐵重的元素的星系化學演化中占了很重的分量。.

新!!: B2FH和R-過程 · 查看更多 »

S-過程

S-過程,或稱為慢中子捕獲過程,是發生在相對來說中子密度較低和溫度中等條件下的恆星進行核合成過程。在這樣的條件下,原子的核心進行中子捕獲的速率相較之下就低於β負衰變。穩定的同位素捕獲中子;但是放射性同位素在另一次中子捕獲前就先衰變成為穩定的子核,這樣經由β穩定的過程,使同位素沿著同位素列表的槽線移動。S-過程大約創造了另一半比鐵重的元素,因此在星系化學演化中扮演著很重要的角色。S-過程與更快速的r-過程中子捕獲不同的是它的低速率。.

新!!: B2FH和S-過程 · 查看更多 »

恆星核合成

恆星核合成 是解釋重元素是由恆星內部的原子經由核融合創造出來的化學元素理論。自從大爆炸期間產生氫、氦、鋰之後,恆星核合成就一直持續地創造重元素。這原本是一個高度預測的理論,但經由觀測到的元素豐度和計算的基礎上,已經有了良好的協定。它解釋了宇宙中元素的豐度為何會隨著時間而增長,以及為什麼某些元素及其同位素會比其它的元素更豐富。這個理論最初是由弗雷德霍伊爾(Fred Hoyle)in在1946年提出,然後在1954年精煉 。進一步的發展,特別是對重元素中比鐵重的元素經由中子捕獲的核合成,在霍伊爾和伯比奇夫婦(傑佛瑞·伯比奇和瑪格麗特·伯比奇)、威廉·福勒四人於1957年提出了著名的元素合成理論(即著名的B2FH論文) ,成為天文物理學史上最受人引用的論文之一。 恆星演化是因它們的組成(元素的豐度)在生命歷程中的改變。首先是氫燃燒(主序星),然後是氦燃燒(紅巨星),並逐漸燃燒更重的元素。然而,因為這些重元素都包含在恆星內部,這本身並沒有明顯的改變宇宙中元素的豐度。在它們生命的後期,低質量的恆星將通過恆星風慢慢地彈出它們的大氣層,形成行星狀星雲;而質量更高的恆星將通過超新星的突發性災難事件來噴發質量。超新星核合成這個名詞被用來描述大質量恆星(12-35倍太陽質量)在演化和爆炸前所創造的元素。這些大質量恆星從碳()到鎳()的各種新同位素的最主要來源。 進一步的燃燒序列是由重力坍縮和其相應的加熱驅動的,導致重元素的碳、氧和矽燃燒。然而,大多數原子量範圍在 (從矽到鎳)核合成的重元素都是由恆星上層崩潰到核心,造成一個壓縮衝擊波反彈向外形成的。短暫的衝擊波升高了大約50%的溫度,從而引起了大約1秒鐘的劇烈燃燒。在大質量恆星最後的燃燒稱為超新星核合成或是"爆炸核合成",是恆星產生重元素的最後一個時期。 促進核合成理論發展的因素是發現宇宙中化學元素的豐度。對具體描述的需要已經受到太陽系化學同位素相對豐度的啟發。當繪製在以元素的原子數為函數的圖表上時,這些豐度有一個參差不齊的鋸齒狀形狀,而變化的因素數以萬計(參見核合成#歷史)。這表明這個自然的過程不是隨機的。第二個啟發是在20世紀了解恆星的核合成發生過程,它被認識到太陽的長壽,和從核融合反應釋放出來的能量是光與熱的來源 。.

新!!: B2FH和恆星核合成 · 查看更多 »

核合成

核合成是從已經存在的核子(質子和中子)創造出新原子核的過程。原始的核子來自大霹靂之後已經冷卻至一千萬度以下,由夸克膠子形成的等離子體海洋。在之後的幾分鐘內,只有質子和中子,也有少量的鋰和鈹(原子量都是7)被合成,但相對來說仍只有很少的數量。太初核合成的第一個過程可以稱為核起源(成核作用),隨後產生各種元素的核合成,包括所有的碳、氧等元素,都是發生在原始恆星內部的核融合或核分裂。.

新!!: B2FH和核合成 · 查看更多 »

核素圖

核素图或核素表是一个二维图表。其中一维表示核素的中子数,另一维表示它的质子数。因此图中的每一点代表某个元素真实存在的或者假想的核素。相比于更关注化学性质的元素周期表,这套标度系统能够提供更多的同位素信息。.

新!!: B2FH和核素圖 · 查看更多 »

核聚变

--,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。在此过程中,物质没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子(能量)。核聚变是给活跃的或“主序的”恆星提供能量的过程。 两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 舉個例子:两个質量小的原子,比方說兩個氚,在一定条件下(如超高温和高压),會发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放。 原子核中蕴藏巨大的能量。根据质能方程E.

新!!: B2FH和核聚变 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

新!!: B2FH和氢 · 查看更多 »

氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.

新!!: B2FH和氦 · 查看更多 »

汉斯·贝特

汉斯·阿尔布雷希特·贝特(Hans Albrecht Bethe,),德国和美国犹太裔核物理学家,对于天体物理学,量子电动力学和固体物理学有很重要的贡献。由于恆星核合成理论研究成果,他荣获了1967年诺贝尔物理学奖。.

新!!: B2FH和汉斯·贝特 · 查看更多 »

重定向到这里:

B2FH理論

传出传入
嘿!我们在Facebook上吧! »