徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

二氰乙炔

指数 二氰乙炔

二氰乙炔,又称为低氮化碳或2-丁炔二腈(IUPAC命名法),是一种氮元素与碳元素形成的化合物,化学式为C4N2。这种分子的空间构型为直线形:N≡C−C≡C−C≡N(通常可以简写成NC4N),叁键与单键交替连接形成共轭体系。它可以看做乙炔中的两个氢原子被两个氰基所取代的产物。 在室温下,二氰乙炔是一种澄清的液体。由于它的标准摩尔生成焓正值很大,是一种吸热化合物,它可以爆炸并生成碳粉和氮气。二氰乙炔在氧气中燃烧产生蓝白色的火焰,温度高达5260 K(4990 °C,9010 °F),该火焰的温度比任何已知物质都要高。.

27 关系: 加成反应双烯体均四甲苯大气层丁二炔乙炔亲双烯体二氧化三碳土卫六凝固共轭效应石墨红外光谱熔化直线形分子构型Diels-Alder反应芳香性诱导效应IUPAC命名法标准摩尔生成焓氧气氰基乙炔氰化物星际物质

加成反应

加成反应(addition reaction)是一种有机化学反应,它发生在有双键或叁键的物质中。加成反应进行后,重键打开,原来重键两端的原子各连接上一个新的基团。加成反应一般是两分子反应生成一分子,相当于无机化学的化合反应。根据机理,加成反应可分为亲核加成反应,亲电加成反应,自由基加成,和环加成。.

新!!: 二氰乙炔和加成反应 · 查看更多 »

双烯体

#重定向 狄尔斯–阿尔德反应.

新!!: 二氰乙炔和双烯体 · 查看更多 »

均四甲苯

均四甲苯,即1,2,4,5-四甲苯,是一种有机化合物,化学式为C6H2(CH3)4。它是带有甜气味的无色固体。它是四甲苯的三种同分异构体之一,其余两种为1,2,3,4-四甲苯(熔点−6.2 °C)和1,2,3,5-四甲苯(熔点−23.7 °C)。均四甲苯的熔点较高(79.2 °C),这反应出其分子的高度对称性。.

新!!: 二氰乙炔和均四甲苯 · 查看更多 »

大气层

大氣層,均源自及也許是一層受到重力吸引聚攏在擁有巨大質量天體周圍的氣體,而如果重力夠大且氣體的溫度夠低,就能長期保留住。有些行星擁有許多不同的主要氣體,並且有非常深厚的大氣(參見氣體巨星)。 恆星大氣層這個名詞描述的是恆星外面的區域,典型的範圍是從不透明的光球開始向外的部份。相對來說是低溫的恆星,在它們外面的大氣層也許可以形成複合的分子。地球大氣層,不僅包含有多數有機體呼吸所使用的氧和植物與海藻和藍綠藻行光合作用所使用的二氧化碳,也保護生物的基因免於受到太陽紫外線輻射的傷害。它目前的組成是古大氣層生活在其中的有機體經過數億年的生物化學修改後的結果。.

新!!: 二氰乙炔和大气层 · 查看更多 »

丁二炔

丁二炔(butadiyne)也稱為聯乙炔(Diacetylene),其分子式C4H2,是高度不飽和的碳氫化合物,含有二個三鍵及三個單鍵,是分子量最小的,「聯乙炔」的名稱表示其中有二個碳-碳的雙鍵,而且可能是由乙炔製備,不過不表示這是乙炔的二聚體。.

新!!: 二氰乙炔和丁二炔 · 查看更多 »

乙炔

乙炔,俗稱風煤(實際上風煤是指氧氣與乙炔組成之套件,風指壓縮氧、煤指乙炔,並非單單乙炔稱為風煤)、電石氣、電土,是炔烴化合物系列中體積最小的一員,主要作工業用途,特別是燒焊金屬方面。 乙炔於1836年由英國科學家艾德蒙·戴维(Edmund Davy)發現,化學式為,有一個如下圖所示的直线型結構: 乙炔在室溫下是無色、極易燃的氣體。純乙炔是無臭的,但工業用乙炔由於含有硫化氫、磷化氫等雜質,而有一股大蒜的氣味。乙炔的化學能主要貯存於它的三鍵中。 在攝氏400度以上, 乙炔會聚合生成乙烯基乙炔()和苯()。在攝氏900度以上則會形成炭黑。 碳酸鈣(石灰岩)和煤炭是生產乙炔的主要原料。首先,碳酸鈣會轉化為氧化鈣,煤炭則轉化為焦炭。然後氧化鈣和焦炭會發生反應形成碳化鈣和一氧化碳: 碳化钙加水會形成乙炔和氫氧化鈣:CaC2 +2H2O → C2H2↑ + Ca(OH)2.

新!!: 二氰乙炔和乙炔 · 查看更多 »

亲双烯体

#重定向 狄尔斯–阿尔德反应.

新!!: 二氰乙炔和亲双烯体 · 查看更多 »

二氧化三碳

二氧化三碳是一个无色刺激性气体,化学式为C3O2,分子中含有四个累积双键。它与CO、CO2、C2O等其他碳氧化物有重要联系。 1873年,Brodie通过对一氧化碳放电,首次制得了二氧化三碳,Marcellin Berthelot創造了低氧化碳(carbon suboxide)這個名稱, 而後來Otto Diels表示,更贴近有機化学的名稱,如二羰基甲烷(dicarbonyl methane)與二氧代丙二烯(dioxallene)也是正確的名稱。.

新!!: 二氰乙炔和二氧化三碳 · 查看更多 »

土卫六

土卫六又稱為「泰坦」(Titan),是环绕土星运行的一颗卫星,是土星卫星中最大的一个,也是太陽系第二大的衛星。荷兰物理学家、天文学家和数学家克里斯蒂安·惠更斯在1655年3月25日发现它,也是在太阳系内继木星伽利略卫星後发现的第一颗卫星。由於它是太陽系第一颗被发现擁有濃厚大氣層的衞星,因此被高度懷疑有生命體的存在,科學家也推測大氣中的甲烷可能是生命體的基礎。土衛六可以被視為一個時光機器,有助我們了解地球最初期的情況,揭開地球生物如何誕生之謎。.

新!!: 二氰乙炔和土卫六 · 查看更多 »

凝固

凝固是指在溫度降低時,物質由液態變為固態的過程,物質凝固時的溫度稱為凝固點。目前已知的液體幾乎都可以在低溫時凝固成為固體,氦是唯一的例外,常壓下在絕對零度時仍為液體(液態氦),需加壓才能凝固為固體。 大多數的物質其凝固點和熔點溫度相同。但有些物質的凝固點和熔點會不一様。例如洋菜膠有熱遲滯現象:在85 °C會熔化,而凝固點在31 °C至40 °C之間。.

新!!: 二氰乙炔和凝固 · 查看更多 »

共轭效应

#重定向 共轭体系.

新!!: 二氰乙炔和共轭效应 · 查看更多 »

石墨

石墨(Graphite),又稱黑鉛(Black Lead),是碳的一種同素異形體(碳的其他同素異形體有很多,為人熟悉的例如鑽石)。作为最軟的礦物之一,石墨不透明且觸感油膩,顏色由鐵黑到鋼鐵灰不等,形狀可呈晶體狀、薄片狀、鱗狀、條紋狀、層狀體,或散佈在變質岩(由煤、碳質岩石或碳質沉積物,受到區域變質作用或是岩漿侵入作用形成)之中。化学性质不活泼,具有耐腐蚀性。.

新!!: 二氰乙炔和石墨 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

新!!: 二氰乙炔和碳 · 查看更多 »

红外光谱

#重定向 红外光谱学.

新!!: 二氰乙炔和红外光谱 · 查看更多 »

熔化

化是指物質由固態轉變為液態的一個過程(又称熔解,其中冰的熔化又写作融化、融解)。固態物質中的內能增加(通常藉由加熱或加壓)至一特定的溫度(稱之為熔点),在該溫度下(或對於非純物質,在某溫度區段內),會轉變為液態。 一般物質因溫度升高而熔化時,其黏度會下降,唯一的例外是元素硫,隨著溫度升高,因為聚合使其黏度會上昇到一定程度,溫度再上昇時其黏度又會下降。 有些有機物質熔化時會出現,是一種介於固態及液態之間的相。.

新!!: 二氰乙炔和熔化 · 查看更多 »

直线形分子构型

化学中,直线形分子构型描述了三个或更多个原子排列在一直线上,键角为180º的现象。通常认为,直线形的有机分子(例如乙炔)中的中心碳原子采用sp杂化。许多常见分子是直线形的,例如CO2、HCN和二氟化氙。直线形的阴离子由N3−和SCN−。直线形的阳离子有NO2+。.

新!!: 二氰乙炔和直线形分子构型 · 查看更多 »

Diels-Alder反应

#重定向 狄尔斯–阿尔德反应.

新!!: 二氰乙炔和Diels-Alder反应 · 查看更多 »

芳香性

芳香性是一種化學性質,有芳香性的分子中,由不饱和键、孤对电子和空轨道组成的共軛系統具有特別的、仅考虑共轭时无法解释的稳定作用。可以将芳香性看作是环状离域和环共振的体现。一般认为在这些体系中的电子,可以自由在由原子组成的环形结构上运动(离域),这些环形结构含有单键和双键相间,离域的结果是环键的键级趋于均化,给予体系稳定作用。 芳香性的理論最初由凱庫勒發展出來,是以六元的苯分子为原型建立起来。理論中的苯有兩個共振形態,並有單键和双键相间,但理论上的两种苯(环己三烯)衍生物的这类异构体在实际上无法检测或分离出来,苯事实上是这两个异构体的“杂化体”,并且具有不考虑电子离域时无法解释的稳定性。.

新!!: 二氰乙炔和芳香性 · 查看更多 »

诱导效应

誘導效應,即因分子中原子或基團極性(电負性)不同而致使成键电子雲在原子链上向某一方向移动的效應。其本质是静电感應。电子雲偏向电负性较强的基团或原子(如氟)移动。 诱导效应的强弱程度可以通过测量偶极矩而得知,也可以通过比较相关取代羧酸的酸解离常数而大致估量。它随距离的增长而迅速下降,故一般情况下只需要考虑三根键的影响。诱导效应的另外一个特点是电子云是沿原子链移动或传递的,这一点与场效应不同。 诱导作用的大小一般以氢为标准进行比较:吸电子能力比氢强的基团或原子具吸电子诱导效应,用 −I 表示;给电子能力比氢强的基团或原子则具给电子诱导效应,用 +I 表示。 取代基的诱导效应强弱有如下规律:.

新!!: 二氰乙炔和诱导效应 · 查看更多 »

IUPAC命名法

IUPAC命名法(International Union of Pure and Applied Chemistry chemical nomenclature)包括IUPAC规定的一系列的命名法,它规定从有机到无机、从分子到高分子及各方面化学术语。IUPAC已将命名法出版为一系列的颜色书。.

新!!: 二氰乙炔和IUPAC命名法 · 查看更多 »

标准摩尔生成焓

标准摩尔生成焓,也称标准生成焓(Standard enthalpy of formation)、标准生成热(Standard heat of formation),符號為 ΔfHmO 或 ΔHfO,單位為kJ/mol(又作kJ·mol-1),指在標準狀態(101.3 kPa;25 ℃)下,生成1摩爾純淨物質放出(符號為負)或者吸收(符號為正)的熱量。.

新!!: 二氰乙炔和标准摩尔生成焓 · 查看更多 »

氧气

氧气(Oxygen, Dioxygen,分子式O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助燃。.

新!!: 二氰乙炔和氧气 · 查看更多 »

氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的雙原子气体分子,由于化学性质稳定而不容易发生化學反应。氮气是地球大气中含量最多的气体,佔總體積的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分離空氣後发现。氮属于氮族元素中的一种。 氮是宇宙中常見的元素,在銀河系及太陽系的豐度排第七名。其生成的原因推測是由於超新星中碳和氫產生的核融合。由於氮元素及其和氫、氧形成的常见化合物都极易揮發,因此在內太陽系中的類地行星中氮元素較不常見。不過和地球一样,其他行星及其卫星的大氣層中,气态的氮及其化合物很常见。 很多工业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体內,将转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。 含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克維拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物鹼(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。 氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。.

新!!: 二氰乙炔和氮 · 查看更多 »

氰(Cyanogen),也称氰气,化学式为(CN),是碳和氮的化合物(N≡C—C≡N)。可用于有机合成,也用作消毒、杀虫的熏蒸剂。 氰在标准状况下是无色气体,带苦杏仁气味。燃烧时呈桃红色火焰,边缘侧带蓝色。氰溶于水、乙醇、乙醚。 氰的化学性质与卤素很相似,是拟卤素(或类卤素)的一种。氰气会被还原为毒性极强的氰化物。氰在高温下与氢气反应生成氰化氢。与氢氧化钾反应生成氰化钾和氰酸钾。氰加热至400°C以上聚合成不溶性的白色固体(CN)x。 氰是草酰胺的脱水产物,是草酸衍生的腈:.

新!!: 二氰乙炔和氰 · 查看更多 »

氰基乙炔

氰基乙炔(Cyanoacetylene)是一種有機化合物,其分子是為 或 H-C≡C-C≡N。氰基乙炔在天文遙測中可觀察星際雲。 氰基乙炔也是米勒放電實驗中所產生的化合物其中之一。.

新!!: 二氰乙炔和氰基乙炔 · 查看更多 »

氰化物

--是特指带有氰离子(CN−)或氰基(-CN)的化合物,其中的碳原子和氮原子通过參键相连接。这一參键给予氰基以相当高的稳定性,使之在通常的化学反应中都以一个整体存在。因该基团具有和卤素类似的化学性质,常被称为拟卤素。通常为人所了解的氰化物都是无机氰化物,俗稱山奈或山埃(來自英語音譯“Cyanide”),是指包含有氰根离子(CN−)的无机盐,可认为是氢氰酸(HCN)的盐,常见的有氰化钾和氰化钠。它们多有剧毒,故而为世人熟知。另有有机氰化物,是由氰基通过单键与另外的碳原子结合而成。视结合方式的不同,有机氰化物可分类为腈(-CN)和异腈(-NC),相应的,氰基可被称为腈基(-CN)或异腈基(-NC)。.

新!!: 二氰乙炔和氰化物 · 查看更多 »

星际物质

星際物質(缩写为ISM)是存在於星系和恆星之間的物質和輻射場(ISRF)的总称。星際物質在天文物理的準確性中扮演著關鍵性的角色,因為它是介於星系和恆星之間的中間角色。恆星在星際物質密度較高的分子雲中形成,並且經由行星狀星雲、恆星風、和超新星獲得能量和物質的重新補充。換個角度看,恆星和星際物質的相互影響,可以協助測量星系中氣體物質的消耗率,也就是恆星形成的活耀期的時間。 以地球的標準,星際物質是極度稀薄的電漿、氣體、和塵埃,是離子、原子、分子、塵埃、電磁輻射、宇宙射線、和磁場的混合體。物質的成分是99%的氣體和1%的塵埃,充滿在星際間的空間。這種極端稀薄的混合物,典型的密度從每立方公尺只有數百到數億個質點,以太初核合成的結果來看氣體的成分,在數量上應該是90%氫和10%的氦,和其他微跡的「金屬」(以天文學說法,除氢和氦以外的元素都是金屬)。 2013年9月12日,美国航空航天局正式宣布,旅行者1号在2012年8月25日已经达到了星际物质(ISM),使其成为第一个这样做的人造物体。星际等离子体和灰尘会被研究直到任务结束的2025年。.

新!!: 二氰乙炔和星际物质 · 查看更多 »

重定向到这里:

2-丁炔二腈低氮化碳

传出传入
嘿!我们在Facebook上吧! »