徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

量子

指数 量子

量子一詞來自拉丁语quantum,意為“有多少”,代表“相當數量的某物质”。在物理學中常用到量子的概念,指一個不可分割的基本個體。例如,“光的量子”是光的單位。而延伸出的量子力學、量子光學等更成為不同的專業研究領域。 其基本概念为所有的有形性質是“可量子化的”。“量子化”指其物理量的數值是特定的,而不是任意值。例如,在(休息狀態的)原子中,電子的能量是可量子化的。這決定原子的穩定和一般問題。 在20世紀的前半期,出現了新的概念。許多物理學家將量子力學視為瞭解和描述自然的的基本理論。在量子出现在世界上100多年间,经过普朗克,爱因斯坦,斯蒂芬霍金等科学家的不懈努力,已初步建立量子力学理论。.

22 关系: 基本粒子德国分子熱輻射物理学马克斯·普朗克黑体辐射阿伏伽德罗常数量子力学量子密碼學量子场论量子化量子光学量子计算机量子数量子態次原子粒子波茲曼常數摩尔 (单位)拉丁语普朗克常数普朗克黑体辐射定律

基本粒子

在粒子物理学中,基本粒子是组成物质最基本的单位。其内部结构未知,所以也无法确认是否由其它更基本的粒子所组成 。随著物理学的不断发展,人类对物质构成的认知逐渐深入,因此基本粒子的定义随时间也有所变化。目前在标準模型理论的架构下,已知的基本粒子可以分为费米子(包含夸克和轻子)以及玻色子(包含规范玻色子和希格斯粒子)。由两个或更多基本粒子所组成的则称作复合粒子。 我们日常生活中的物质由原子所组成。过去原子被认為是基本粒子,原子(atom)这个词来自希腊语中「不可切分的」。直到约1910年以前,原子的存在与否仍存在争议,一些物理学家认為物质是由能量所组成,而分子不过是数学上的一种猜想。之后,原子核被发现是由质子和中子所构成。20世纪前、中期的基本粒子是指质子、中子、电子、光子和各种介子,这是当时人类所能探测的最小粒子。随著实验和量子场论的进展,发现质子、中子、介子发现是由更基本的夸克和胶子所组成。同时人类也陆续发现了性质和电子类似的一系列轻子,还有性质和光子、胶子类似的一系列规范玻色子。这些是现代的物理学所理解的基本粒子。.

新!!: 量子和基本粒子 · 查看更多 »

德国

德意志联邦共和国(Bundesrepublik Deutschland/),简称德国(Deutschland),是位於中西歐的联邦议会共和制国家,由16个-zh-hans:联邦州; zh-hant:邦;-组成,首都与最大城市为柏林。其国土面积约35.7万平方公里,南北距离为876公里,东西相距640公里,从北部的北海与波罗的海延伸至南部的阿尔卑斯山。气候温和,季节分明。德国人口约8,180万,为欧洲联盟中人口最多的国家,也是世界第二大移民目的地,仅次于美国。 在50万年前的舊石器時代晚期,海德堡人及其後代尼安德特人生活在今德國中部。自古典時代以來各日耳曼部族開始定居於今日德國的北部地區。公元1世紀時,有羅馬人著作的關於“日耳曼尼亞”的歷史記載。在公元4到7世紀的民族遷徙期,日耳曼部族逐漸向歐洲南部擴張。自公元10世紀起,德意志領土組成神聖羅馬帝國的核心部分。16世紀時,德意志北部地區成為宗教改革中心。在神聖羅馬帝國滅亡後,萊茵邦聯和日耳曼邦聯先後建立,1871年,在普魯士王國主導之下,多數德意志邦國統一成為德意志帝國,「德意志」開始做為國名使用。在第一次世界大戰和1918-1919年德國革命後,德意志帝國解體,議會制的威瑪共和國取而代之。1933年納粹黨獲取政權並建立獨裁統治,最終導致第二次世界大戰及系統性種族滅絕的發生。在戰敗並經歷同盟國軍事佔領後,德國分裂为德意志聯邦共和國(西德)和德意志民主共和國(東德)。在1990年10月3日重新統一成為現在的德國。国家元首为联邦总统,政府首脑則为联邦总理。 德國是世界大國之一,其國内生產總值以國際匯率計居世界第四,以購買力評價計居世界第五。其諸多工業工程和科技部門位居世界前列,例如全球馳名的德國車廠、精密部件等,為世界第三大出口國。德國為發達國家,生活水平居世界前列。德國人也以熱愛大自然聞名,都市綠化率極高,也是歐洲再生能源大國,是可持續發展經濟的樣板,除了強調環境保護與自然生態保育,在人為飼養活體的態度十分嚴謹,不但獲得大量外匯和資訊優勢,其動物保護法律管束、生命教育水準也是首屈一指的,在高等教育方面並提供免費大學教育,並具備完善的社會保障制度和醫療體系,催生出拜爾等大藥廠。 德国为1993年欧洲联盟的创始成员国之一,为申根区一部分,并于1999年推动欧元区的建立。德国亦为联合国、北大西洋公约组织、八国集团、20国集团及经济合作与发展组织成员。其军事开支总额居世界第九。 德語是歐盟境内使用人數最多的母語。德國文化的豐富層次和對世界的影響表現在其建築和美術、音樂、哲學以及電影等等。德國的文化遺產主要以老城為代表。另外國家公園和自然公園共計有上百處。.

新!!: 量子和德国 · 查看更多 »

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

新!!: 量子和分子 · 查看更多 »

熱輻射

热辐射 (heat radiation)是物体用电磁辐射把热能向外散发的热传方式,是热的三种主要传递方式之一,以熱輻射傳遞熱時不需要介質。任何物體溫度只要高於0K就會釋放熱輻射。.

新!!: 量子和熱輻射 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 量子和物理学 · 查看更多 »

马克斯·普朗克

克斯·卡尔·恩斯特·路德维希·普朗克(Max Karl Ernst Ludwig Planck,),德国物理学家,量子力学的创始人,20世纪最重要的物理学家之一,因发现能量量子而对物理学的发展做出了重要贡献,並在1918年獲得诺贝尔物理学奖。 作为一个理论物理学家,普朗克最大的贡献是首先提出了(舊)量子论。这个理论彻底改变人类对原子與次原子的认识,正如爱因斯坦的相对论改变人类对时间和空间的认识,这两个理论一起构成了20世纪物理学的基础。 波耳、愛因斯坦與普朗克被稱為舊量子論的奠基者。.

新!!: 量子和马克斯·普朗克 · 查看更多 »

黑体辐射

黑体辐射指处于热力学平衡态的黑体发出的电磁辐射。黑体辐射的电磁波谱只取决于黑体的温度。 另一方面,所謂黑體輻射其實就是光和物質達到平衡所表現出的現象。物質達到平衡,所以可以用一個溫度來描述物質的狀態,而光和物質的交互作用很強,如此光和光之間也可以用一個溫度來描述(光和光之間本身不會有交互作用,但光和物質的交互作用很強)。而描述這關係的便是普朗克分佈(Planck distribution)。黑体辐射能量按波长的分布仅与温度有关。 黑体不仅仅能全部吸收外来的电磁辐射,且散射电磁辐射的能力比同温度下的任何其它物体强。 对于黑体的研究,使自然现象中的量子效应被發现。 黑体作为一个理想化的物体,在现实中是不存在的,因此现实中物体的辐射也与理论上的黑体辐射有所出入。但是,可以观察一些非常类似黑体的物质发出的辐射,例如一顆恆星或一個只有單一開口的空腔所发出的辐射。舉個例來說,人們觀測到宇宙背景輻射,對應到一個約3K的黑體輻射,這暗示宇宙早期光是和物質達到平衡的。而隨著時間演化,溫度慢慢降了下來,但方程式依然存在。(頻率和溫度的效應抵銷).

新!!: 量子和黑体辐射 · 查看更多 »

阿伏伽德罗常数

在物理学和化学中,阿伏伽德罗常数(符号:N或L)的定義是一个比值,是一個樣本中所含的基本單元數(一般為原子或分子)N,與它所含的物質量n(單位為摩爾)間的比值,公式為NA.

新!!: 量子和阿伏伽德罗常数 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 量子和量子力学 · 查看更多 »

量子密碼學

量子密碼學泛指利用量子力学的特性來加密的科學。目前所使用的公开密钥加密與數位簽章(如RSA加密演算法或ElGamal)在具規模的量子電腦出現後,都會在短時間內被破解。量子密碼學的優勢在於,除了古典密碼學上的數學難題之外,再加上某些量子力學的特性,可達成古典密碼學無法企及的效果。例如,以量子態加密的資訊無法被複製。又例如,任何試圖嘗試讀取量子態的行動,都會改變量子態本身。這使得任何竊聽量子態的行動會被發現。量子密碼學最著名的例子是量子密鑰分發,而量子密鑰分發提供了通訊兩方安全傳遞密鑰的方法,且該方法的安全性可被資訊理論所證明。.

新!!: 量子和量子密碼學 · 查看更多 »

量子场论

在理論物理學中,量子场论(Quantum field theory)是由量子力學和狹義相對論互相融合後的物理理論。已被廣泛的應用在粒子物理學和凝聚體物理學中。量子場論為描述多自由度系統,尤其是包含粒子產生和湮滅過程的過程,提供了有效的描述框架。非相對論性的量子場論又稱量子多體理論,主要被應用於凝聚體物理學,比如描述超導性的BCS理論。而相對論性的量子場論則是粒子物理學不可或缺的組成部分。自然界中人類目前所知的基本相互作用有四種:強相互作用、電磁相互作用、弱相互作用和引力。除去引力的話,另外三種相互作用都已找到了合適滿足特定對稱性的量子場論來描述:強作用有量子色動力學;電磁相互作用有量子電動力學,理論框架建立於1920到1950年間,主要的貢獻者為保羅·狄拉克,弗拉迪米爾·福克,沃爾夫岡·泡利,朝永振一郎,施溫格,理查德·費曼和弗里曼·戴森等;弱作用有費米點作用理論。後來弱作用和電磁相互作用實現了形式上的統一,通過希格斯機制產生質量,建立了弱電統一的量子規範理論,即GWS(Glashow, Weinberg, Salam)模型。量子場論成為現代理論物理學的主流方法和工具。 而這些交互作用傳統上是由費曼圖來視覺化,並且提供簡便的計算規則來計算各種多體系統過程。.

新!!: 量子和量子场论 · 查看更多 »

量子化

在物理學裏,量子化是一種從經典場論建構出量子場論的程序。使用這程序,時常可以直接地將經典力學裏的理論量身打造成嶄新的量子力學理論。物理學家所談到的場量子化,指的就是電磁場的量子化。在這裡,他們會將光子分類為一種場量子(例如,稱呼光子為光量子)。對於粒子物理學,核子物理學,固態物理學和量子光學等等學術領域內的理論,量子化是它們的基礎程序。.

新!!: 量子和量子化 · 查看更多 »

量子光学

量子光学(Quantum optics)是物理学一个1990年後成熟的新兴分支,为原子分子与光物理的一部分,和冷原子物理紧密相连,和凝態物理、粒子物理學、宇宙學等成熟分支相比,特徵在於精密的實驗和精準的理論擁有緊密、具建設性的互動。 在1960年代因為漢伯里·布朗及特維斯效應刺激而發展出理論基礎,討論不同程度的相量子相干性,如g^為零是典型的單光子源判准.主要研究光子和原子的量子交互作用,研究工具為雷射及離子井。.

新!!: 量子和量子光学 · 查看更多 »

量子计算机

量子计算机(quantum computer)是一种使用量子邏輯進行通用計算的設備。不同於电子计算机(或稱傳統電腦),量子計算用來存儲數據的對象是量子比特,它使用量子演算法來進行數據操作。马约拉纳费米子反粒子就是自己本身的属性,或许是令量子计算机的制造变成现实的一个关键。.

新!!: 量子和量子计算机 · 查看更多 »

量子数

量子數描述量子系統中動力學上各守恒數的值。它們通常按性質描述原子中電子的各能量,但也會描述其他物理量(如角動量、自旋等)。由於任何量子系統都能有一個或以上的量子數,列出所有可能的量子數是件沒有意義的工作。.

新!!: 量子和量子数 · 查看更多 »

量子態

在量子力學裏,量子態(quantum state)指的是量子系統的狀態。態向量可以用來抽像地表示量子態。採用狄拉克標記,態向量表示為右矢|\psi\rangle;其中,在符號內部的希臘字母\psi可以是任何符號,字母,數字,或單字。例如,在計算氫原子能譜時,能級與主量子數n有關,所以,每個量子態的態向量可以表示為|n \rangle。 一般而言,量子態可以是純態或混合態。上述案例是純態。混合態是由很多純態組成的機率混合。不同的組合可能會組成同樣的混合態。當量子態是混合態時,可以用密度矩陣做數學描述,這密度矩陣實際給出的是機率,不是密度。純態也可以用密度矩陣表示。 哥本哈根詮釋以操作定義的方法對量子態做定義:量子態可以從一系列製備程序來辨認,即這程序所製成的量子系統擁有這量子態。例如,使用z-軸方向的斯特恩-革拉赫實驗儀器,如右圖所示,可以將入射的銀原子束,依照自旋的z-分量S_z分裂成兩道,一道的S_z為上旋,量子態為|\uparrow\rangle或|z+\rangle,另一道的S_z為下旋,量子態為|\downarrow\rangle或|z-\rangle,這樣,可以製備成量子態為|\uparrow\rangle的銀原子束,或量子態為|\downarrow\rangle的銀原子束。銀原子自旋態向量存在於二維希爾伯特空間。對於這純態案例,相關的態向量|\psi\rangle.

新!!: 量子和量子態 · 查看更多 »

次原子粒子

次原子粒子,或稱亚原子粒子。是指比原子還小的粒子。例如:電子、中子、質子、介子、夸克、膠子、光子等等。.

新!!: 量子和次原子粒子 · 查看更多 »

波茲曼常數

波茲曼常數(Boltzmann constant)是有關於溫度及能量的一個物理常數,常用 k 或 k_B 表示,以纪念奧地利物理學家路德維希·波茲曼在統計力學领域做出的重大貢獻。數值及單位為:(SI制,2014 CODATA 值) 括號內為誤差值,原則上玻尔兹曼常數為導出的物理常數,其值由其他物理常數及絕對溫度單位的定義所決定。 氣體常數 R 是波茲曼常數 k 乘上阿伏伽德罗常數 N_A: k.

新!!: 量子和波茲曼常數 · 查看更多 »

摩尔 (单位)

莫耳(拉丁文「一團」),是物质的量的国际单位,符号为mol(mole)。1莫耳是指化学物质所含基本微粒个数等于12克的碳-12(_6^\!\mbox)所含原子个数,即阿伏伽德罗常数。使用莫耳时,应指明基本微粒,可以是分子、原子、离子、电子或其他基本微粒,也可以是基本微粒的特定组合体。1莫耳物质中所含基本微粒的个数等于阿伏伽德罗常数,符号为NA,数值约是6.02214129×1023,常取6.02×1023。摩尔是國際單位制的七個基本單位之一,在量綱分析中會用符號n表示。 摩尔可以用于表达原子、电子和离子等微观粒子的数量。在化学反应的定量计算中,常使用摩尔。例如氢气与氧气反应生成水,可以用化学方程式表达为:2+→2。其意义为2摩尔氢气与1摩尔氧气反应生成2摩尔水。溶液的浓度也常用物质的量浓度,即摩尔浓度表示,例如1mol/L的氯化钠溶液,表示每升该溶液中含有1摩尔氯化钠。 摩尔质量定义为一摩尔某物质的质量,以克计量时在数值上等于该物质的相对分子质量(或相对原子质量)。例如水分子的相对分子质量约为18.015,一摩尔水的质量为18.015克。 “克-分子”(gram-molecule)曾被用来表达本质上相同的概念,1克-分子的純物質表示其質量等於該物質數量為阿伏加德罗常数時的質量。而“克-原子”(gram-atom)则用来表示一个相关但不同的概念,1克-原子的元素表示其質量等於該原子的數量為阿伏加德罗常数時的質量。例如1摩尔是1“克-分子”,是由1“克-原子”及2“克-原子”組成。。 一些科学家以1摩尔物质所含微粒数——亞佛加厥数确定了一个纪念日——摩尔日。摩尔日纪念活动在每年的10月23日举行,也有一些纪念活动在6月2日举行。.

新!!: 量子和摩尔 (单位) · 查看更多 »

拉丁语

拉丁语(lingua latīna,),羅馬帝國的奧古斯都皇帝時期使用的書面語稱為「古典拉丁語」,屬於印欧语系意大利語族。是最早在拉提姆地区(今意大利的拉齐奥区)和罗马帝国使用。虽然现在拉丁语通常被认为是一种死语言,但仍有少数基督宗教神职人员及学者可以流利使用拉丁语。罗马天主教传统上用拉丁语作为正式會議的语言和礼拜仪式用的语言。此外,许多西方国家的大学仍然提供有关拉丁语的课程。 在英语和其他西方语言创造新词的过程中,拉丁语一直得以使用。拉丁语及其后代罗曼诸语是意大利语族中仅存的一支。通过对早期意大利遗留文献的研究,可以证实其他意大利语族分支的存在,之后这些分支在罗马共和国时期逐步被拉丁语同化。拉丁语的亲属语言包括法利斯克语、奥斯坎语和翁布里亚语。但是,威尼托语可能是一个例外。在罗马时代,作为威尼斯居民的语言,威尼托语得以和拉丁语并列使用。 拉丁语是一种高度屈折的语言。它有三种不同的性,名词有七格,动词有四种词性变化、六种时态、六种人称、三种语气、三种语态、两种体、两个数。七格当中有一格是方位格,通常只和方位名词一起使用。呼格与主格高度相似,因此拉丁语一般只有五个不同的格。不同的作者在行文中可能使用五到七种格。形容词与副词类似,按照格、性、数曲折变化。虽然拉丁语中有指示代词指代远近,它却没有冠词。后来拉丁语通过不同的方式简化词尾的曲折变化,形成了罗曼语族。 拉丁语與希腊语同為影響歐美學術與宗教最深的语言。在中世纪,拉丁语是当时欧洲不同国家交流的媒介语,也是研究科学、哲学和神學所必须的语言。直到近代,通晓拉丁语曾是研究任何人文学科教育的前提条件;直到20世纪,拉丁语的研究才逐渐衰落,重点转移到对當代语言的研究。.

新!!: 量子和拉丁语 · 查看更多 »

普朗克常数

普朗克常數記為h,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和实验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常數乘以辐射电磁波的频率。这关系称为普朗克关系,用方程式表示普朗克关系式: 其中,E 是能量,h 是普朗克常數,\nu 是频率。 普朗克常數的值約為: 普朗克常數的量綱為能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·公尺(m)·秒(s))為角動量單位.

新!!: 量子和普朗克常数 · 查看更多 »

普朗克黑体辐射定律

在物理学中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律,英文:Planck's law, Blackbody radiation law)描述,在任意温度T\,下,从一个黑体中发射出的电磁辐射的辐射率与频率彼此之間的关系。在这裏,辐射率是频率\nu的函数: 如果写成波长的函数,則辐射率为 其中,I_或I_是輻射率,\nu \,是频率,\lambda \,是波长,T \,是黑体的温度,h \,是普朗克常数,c \, 是光速,k \, 是玻尔兹曼常数。 注意这两个函数具有不同的单位:第一个函数是描述单位频率间隔内的辐射率,而第二个则是单位波长间隔内的辐射率。因而I_(\nu,T)和I_(\lambda,T)并不等价。它们之间存在有如下关系: 通过单位频率间隔和单位波长间隔之间的关系,这两个函数可以相互转换: 在低頻率極限,普朗克定律趨於瑞利-金斯定律,而在高頻率極限,普朗克定律趨於維恩近似。 馬克斯·普朗克於1900年發展出普朗克定律,並從實驗結果計算出所涉及的常數。後來,他又展示,當表達為能量分布時,該分布是電磁輻射在熱力學平衡下的唯一穩定分布。當表達為能量分布時,該分布是熱力學平衡分布家族的成員之一,其它成員為玻色–愛因斯坦分布、費米–狄拉克分布、麦克斯韦-玻尔兹曼分布等等。.

新!!: 量子和普朗克黑体辐射定律 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »