徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

指数 铁

铁是一种化学元素,它的化学符号是Fe,它的原子序数是26,它的相对原子质量是56。它是过渡金属的一种。铁是最常用的金属,是地球外核及內核的主要成份,是地殼上豐度第四高的元素和第二高的金屬。鐵常出現在类地行星中,因為鐵是高質量恆星核融合後的產物,鎳-56是放熱核融合反應的最後一個產物,之後會衰變成最常見的鐵同位素。 铁和其他8族元素相同,其氧化態範圍很廣,由−2到+6,但其中+2和+3是最常見的氧化態。在流星体及低氧的環境下,鐵會以单质的形式存在,但是鐵很容易和氧氣和水反應。鐵的表面是有光澤的銀灰色,但在空氣中鐵會反應生成水合的氧化鐵,一般稱為铁锈。許多金屬在氧化後會形成钝化的氧化層,保護內部的金屬不被氧化,但氧化鐵的密度較鐵要低,因此氧化鐵會剝落,無法保護內部的鐵不受腐蝕。.

95 关系: 埃格斯特朗原子序数原子量单质可逆反應叶绿素外核宇宙一氧化碳亚铁磁性人民教育出版社二茂铁二氧化碳五羰基铁延展性体心立方结构微量元素地壳地球地球的地殼元素豐度列表化学符号化學元素豐度元素四羰基铁酸二钠四氟硼酸二茂铁四氧化三铁矽燃燒過程硝酸硫酸硫酸亚铁磁鐵礦类地行星羰基痕量元素生鐵电化学熔点煤气盐 (化学)隕石鎳-56菱铁矿鐵的同位素非金属元素...血红蛋白褐铁矿高铁酸钾质量贫血黄铁矿过渡金属赤铁矿钝化铁器时代铁磁性铁锈金属配合物腐蚀恆星核合成核聚变氧化氧化亚铁氧化物氧化铁氧气氯化铁水合水分子水蒸气沸点游离态流星体摄氏温标晶体结构8族元素 扩展索引 (45 更多) »

埃格斯特朗

埃格斯特朗(Ångström, 简称埃,符号Å)是一个长度计量单位。它不是国际制单位,但是可与国际制单位进行换算,即1 Å.

新!!: 铁和埃格斯特朗 · 查看更多 »

原子序数

原子序数(Atomic Number)是一个原子核内质子的数量,因此也稱質子數,也等於原子電中性時的核外電子數。拥有同一原子序的原子属于同一化学元素。原子序数的符号是Z。 通常原子序数标在元素符号的左下方: 1H是氢,8O是氧。 但特定元素的原子序总是确定的,因此这个值很少这样写。 德米特里·门捷列夫在制定其元素周期表时发现,假如将元素按其原子核质量来排列会出现一些不规则的情况。比如碲的原子核比碘重,但从化学性能上来说,碲明显是与氧、硫、硒一族的,而碘与氟、氯、溴是一族的,也就是说,碘要排在碲之后。1913年亨利·莫塞莱发现这个异常的解决方法是不按原子重量,而按原子核的电荷数,即原子序来排列。 然而原子序数亦有负数,反氢记作-1H,反氦记作-2He。.

新!!: 铁和原子序数 · 查看更多 »

原子量

原子量(atomic mass),也称原子质量或相对原子质量,符号ma,是指單一原子的質量,其單位為原子质量单位(符號u或Da,以往曾用amu) ,定義為一个碳12原子靜止質量的。原子質量以質子和中子的質量為主,元素的原子量几近等于其質量數。 若將原子量除以原子质量单位,會得到一個無因次量,這個無因次量稱為「相對同位素質量」(relative isotopic mass)。因此碳12的原子量是12u或是12 Da,而一個碳12原子的相對同位素質量就是12。.

新!!: 铁和原子量 · 查看更多 »

单质

单质是由同种元素组成的纯净物。元素在单质中存在时称为元素的游离态。 一般来说,单质的性质与其元素的性质密切相关。比如,很多金属的金属性都很明显,那么它们的单质还原性就很强。不同种类元素的单质,其性质差异在结构上反映得最为突出。 与单质相对,由多种元素组成的物质叫做化合物。.

新!!: 铁和单质 · 查看更多 »

可逆反應

可逆反應()是指通常在同一条件下正反应方向和逆反应方向均能进行的化学反应,例如: 生成物变为反應物的速率小到可以忽略的反应则称做不可逆反应。 事實上,絕大多數的反應都是可逆反應,只不過其可逆程度較小,一般把它認為是不可逆反應。 可逆反應必須要處於一個封閉系統之內,否則當生成物是氣體,則有可能會令生成物進入大氣,令逆向反應不能發生,最後變成不可逆反應。 當正向反應(正反应,向右的反应)的速率與逆向反應(逆反应)的速率相等時,可逆反應達到化學平衡。.

新!!: 铁和可逆反應 · 查看更多 »

叶绿素

叶绿素是存在于植物、藻类和蓝藻中的光合色素。 光合作用的第一步是光能被叶绿素吸收并将叶绿素离子化。产生的化学能被暂时储存在三磷酸腺苷(ATP)中,并最终将二氧化碳和水转化为氧氣和碳水化合物。叶绿素a和叶绿素b的吸收光谱较为接近,两者在蓝紫光(430~480nm)和红光区(640~660nm)都有一吸收高峰,叶绿素ab对绿光的吸收很少,所以呈绿色。 并非只有叶子才有叶绿素,叶柄的薄壁细胞都有叶绿素的存在。就是在一片叶子之中,也并非只有叶肉细胞有叶绿素,维管束鞘和保衛細胞都有叶绿素。当秋天渐渐来临,日照时间和空气适度都逐渐变少时, 一层在叶柄和树的木质部的细胞就慢慢形成了。这层细胞妨碍了水和养料的输送,因此光合作用减产了,没有了叶绿素的叶子在短时间内就变成其他颜色了。.

新!!: 铁和叶绿素 · 查看更多 »

外核

外核是地球在固體的內核之上並在地函之下,由鎔融的鐵和鎳構成,厚度大約。它的上層邊界大約在地殼表面之下大約,內核和外核轉換的位置大約在地球表面之下處。 外核的溫度範圍大約從外側的4400°C向內增加至接近內核的6100 °C,在外核的鐵鎳流體中的埃迪電流被相信會影響地球的磁場。外核雖然有著和內核一樣的成分,但因為沒有足夠的壓力使它成為固體,所以呈現液態。硫磺和氧也存在於外核中。.

新!!: 铁和外核 · 查看更多 »

宇宙

宇宙(Universe)是所有時間、空間與其包含的內容物所構成的統一體;它包含了行星、恆星、星系、星系際空間、次原子粒子以及所有的物質與能量,宇指空間,宙指時間。目前人類可觀測到的宇宙,其距離大約為;而整個宇宙的大小可能為無限大,但未有定論。物理理論的發展與對宇宙的觀察,引領著人類進行宇宙構成與演化的推論。 根據歷史記載,人類曾經提出宇宙學、天體演化學與,解釋人們對於宇宙的觀察。最早的理論為地心說,由古希臘哲學家與印度哲學家所提出。數世紀以來,逐漸精確的天文觀察,引領尼古拉斯·哥白尼提出以太陽系為主的日心說,以及經約翰內斯·克卜勒改良的橢圓軌道模型;最終艾薩克·牛頓的重力定律解釋了前述的理論。後來觀察方法逐漸改良,引領人類意識到太陽系位於數十億恆星所形成的星系,稱為銀河系;隨後更發現,銀河系只是眾多星系之一。在最大尺度範圍上,人們假定星系的分布,且各星系在各個方向之間的距離皆相同,這代表著宇宙既沒有邊緣,也沒有所謂的中心。透過星系分布與譜線的觀察,產生了許多現代物理宇宙學的理論。20世紀前期,人們發現到星系具有系統性的紅移現象,表明宇宙正在;藉由宇宙微波背景輻射的觀察,表明宇宙具有起源。最後,1990年代後期的觀察,發現宇宙的膨脹速率正在加快,顯示有可能存在一股未知的巨大能量促使宇宙加速膨脹,稱做暗能量。而宇宙的大多數質量則以一種未知的形式存在著,稱做暗物質。 大爆炸理論是當前描述宇宙發展的宇宙學模型。目前主流模型,推測宇宙年齡為。大爆炸產生了空間與時間,充滿了定量的物質與能量;當宇宙開始膨脹時,物質與能量的密度也開始降低。在初期膨脹過後,宇宙開始大幅冷卻,引發第一波次原子粒子的組成,稍後則合成為簡單的原子。這些原始元素所組成的巨大星雲,藉由重力結合起來形成恆星。 目前有各種假說正競相描述著宇宙的終極命運。物理學家與哲學家仍不確定在大爆炸前是否存在任何事物;許多人拒絕推測與懷疑大爆炸之前的狀態是否可偵測。目前也存在各種多重宇宙的說法,其中部分科學家認為可能存在著與現今宇宙相似的眾多宇宙,而現今的宇宙只是其中之一。.

新!!: 铁和宇宙 · 查看更多 »

一氧化碳

一氧化碳,分子式CO,是無色、無嗅、無味的无机化合物氣體,比空氣略輕。在水中的溶解度甚低,但易溶于氨水。空气混合爆炸极限为12.5%~74%。 一氧化碳是含碳物质不完全燃烧的产物。也可以作为燃料使用,煤和水在高温下可以生成水煤气(一氧化碳与氢气的混合物)。有些現代技術,如煉鐵,還是會產生副產品的一氧化碳。一氧化碳是可用作身體自然調節炎症反應的三種氣體之一(其他兩種是一氧化氮和硫化氫)。 由于一氧化碳与体内血红蛋白的亲和力比氧与血红蛋白的亲和力大200-300倍,而碳氧血红蛋白较氧合血红蛋白的解离速度慢3600倍,当一氧化碳浓度在空气中达到35ppm,就会对人体产生损害,會造成一氧化碳中毒(又称煤气中毒)。 雖然一氧化碳有毒,但動物代謝亦會產生少量一氧化碳,並認為有一些正常的生理功能。.

新!!: 铁和一氧化碳 · 查看更多 »

年,或稱地球年、太陽年,是與地球在軌道上繞太陽公轉有關事件再現之間的時間單位。將之擴展,可以適用於任何一顆行星:例如,一「火星年」是火星自己完整的運行繞太陽軌道一圈的時間。 一般而言,一年之長度取為太陽在天球上沿黄道從某一定標點再回到同一定標點所經歷的時間間隔。由於所選取之定標點不同,年之定義有:.

新!!: 铁和年 · 查看更多 »

亚铁磁性

在物理学中,亚铁磁性物质为不同亚晶格的原子磁矩呈相反的物质,如在反铁磁性中;然而,在亞铁磁性物质中,相反的磁矩不相等,存在自发磁化。该情况发生于,当亚晶格是由不同的材料或不同价态的铁组成时(例如Fe2+和Fe3+)。 亚铁磁性物质像铁磁性一样,在居里点以下保持暂态磁性,在该温度以上无磁性序列(顺磁性)。但是,有时候在一个低于居里点的温度,两种亚晶格有相同大小的磁矩,从而导致净磁矩为零;该现象被称为磁抵消点。该抵消点在石榴石和稀土金属——过渡金属混合物(RE-TM)中,容易被观测到。于此同时,亚铁磁可能还存在角动量抵消点,此时其净角动量为零。该抵消点对于磁记忆设备在达到高速反向磁化是一个重要的点。.

新!!: 铁和亚铁磁性 · 查看更多 »

人民教育出版社

人民教育出版社(简称“人教社”,英文:People's Education Press(PEP))是中国的一家教育类专业出版社。ISBN代码为7-107。成立于1950年12月1日,毛泽东题写社名。人民教育出版社直属于中华人民共和国教育部,受中华人民共和国教育部和中华人民共和国国家新闻出版广电总局双重领导。人民教育出版社主要从事基础教育教材和其他门类教材及教育图书的研究、编写、编辑、出版和发行工作。从1951年起编写出版了10套全国通用中小学教材;累计出版各类出版物3万余种,发行量逾600亿册。1953年出版《新华字典》音序排列本,是为中华人民共和国成立后编写的第一部字典(后该字典由商务印书馆出版)。.

新!!: 铁和人民教育出版社 · 查看更多 »

二茂铁

二茂铁(英文:Ferrocene),或称环戊二烯基铁,是分子式为Fe(C5H5)2的有机金属化合物,室溫下會微量昇華因而帶有似樟腦的特殊氣味 。二茂铁是最重要的金属茂基配合物,也是最早被发现的夹心配合物,包含两个环戊二烯负离子以π电子与铁原子成键。.

新!!: 铁和二茂铁 · 查看更多 »

二氧化碳

二氧化碳(IUPAC名:carbon dioxide,分子式:CO2)是空氣中常見的化合物,由两个氧原子与一个碳原子通过共价键连接而成。空氣中有微量的二氧化碳,約佔0.04%。二氧化碳略溶於水中,形成碳酸,碳酸是一種弱酸。 在二氧化碳分子中,碳原子的成键方式是sp杂化轨道与氧原子成键。碳原子的两个sp杂化轨道分别与两个氧原子生成两个σ键。碳原子上两个没有参加杂化(混成)的p轨道与成键的sp杂化轨道成90°的直角,并同氧原子的p轨道分别发生重叠,故缩短了碳氧键的间距。 二氧化碳平均约占大气体积的400ppm,不過每年因為人為的排放增加,比率還在逐步上升。2018年4月大氣二氧化碳月均濃度超過410ppm,為過去80萬年來最高。大气中的二氧化碳含量随季节变化,这主要是由于植物生长的季节性变化而导致的。当春夏季来临时,植物由于光合作用消耗二氧化碳,其含量随之减少;反之,当秋冬季来临时,植物不但不进行光合作用,反而制造二氧化碳,其含量随之上升。 二氧化碳常壓下為無色、無味、不助燃、不可燃的氣體。二氧化碳是一種溫室氣體。二氧化碳的濃度自1900年至2016年11月增長了約127ppm。.

新!!: 铁和二氧化碳 · 查看更多 »

五羰基铁

五羰基铁,铁与羰基的化合物,化学式为Fe(CO)5。.

新!!: 铁和五羰基铁 · 查看更多 »

延展性

延展性(ductility and malleability),是物質的一種機械性質,表示材料在受力而產生破裂(fracture)之前,其塑性變形的能力。延展性是由延性、展性兩個概念相近的機械性質合稱。常見金屬及許多合金均有延展性。 在材料科學中,延性(Ductility)是材料受到拉伸應力(tensile stress)變形時,特別被注目的材料能力。延性它主要表現在材料被拉伸成線條狀時。展性(Malleability)是另外一個較相似的概念,但它表示為材料受到壓縮應力(compressive stress)變形,而不破裂的能力。展性主要表現在材料受到鍛造或軋製成薄板時。延性和展性兩者間並不總是相關,如黃金具有良好的延性和展性,但鉛僅僅有良好的展性而已。然而,通常上因這兩個性質概念相近,常被稱為延展性。.

新!!: 铁和延展性 · 查看更多 »

体心立方结构

原子程立方体排列,八个原子个为顶点,而且在其立方体中心有一个原子存在,我们称之为体心立方体结构。在这之外还存在面心立方结构和稠密六方结构。 Category:原子物理学.

新!!: 铁和体心立方结构 · 查看更多 »

微量元素

微量元素、微營養素(英語:Micronutrients)指占生物体總質量0.01%以下,且為生物體所必需的一些化学元素。如鐵、矽、鋅、銅、碘、溴、硒、錳等。 微量元素为植物体必需但需求量很少的一些元素。这些元素在土壤中缺少或不能被植物利用时,植物生长不良,过多又容易引起中毒。在农业中,常以微量元素作种子处理、根外追肥来提高作物产量。 目前多數科學家比較一致的看法,認為生命必需的元素共有28種,在28種生命元素中,按體內含量的高低可分為宏量元素(或常量元素)和微量元素。微量元素占人體總質量的0.03%左右。這些微量元素在體內的含量雖小,但在生命活動過程中的作用是十分重要的。.

新!!: 铁和微量元素 · 查看更多 »

地壳

在地理上,地殼(Crust)是指一个星球最外層的實心薄殼,可以用化學方法将它与地幔區别。地球,月球,水星,金星,火星以及其它星球的地殼大部分都是由火成岩形成的,星球的地殼比起它们的地幔有更多的不相容成分。.

新!!: 铁和地壳 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

新!!: 铁和地球 · 查看更多 »

地球的地殼元素豐度列表

以下是地球地殼中的化學元素豐度的列表,其中包括 5 份不同資料來源得到的結果,此處的豐度以質量百分比的豐度為準。 其中的數字是估計值,會隨著資料來源及估計方式不同而改變。因此各元素豐度的大小關係只能作大致上的參考。.

新!!: 铁和地球的地殼元素豐度列表 · 查看更多 »

化学符号

化学符号以拉丁字母缩写的形式表达化学元素或官能基。化学元素的符号通常为一个或两个字母,而一些人造元素的IUPAC临时符号则使用三个字母。 元素的化学符号在元素周期表中使用,亦用来书写化学式。例如下列把氢及氧化合为水的反应的化学方程式: 多数元素的符号缩写都是来自它的英语名称,但亦有部分缩写是来自它的拉丁语或德语名称。如钠(Na)来自拉丁语natrium、钨(W)来自德语wolfram。 除此之外,氢的同位素氘(2H)会以 D 来表示,氚(3H)会以 T 来表示。 R 在有机化学中用来表示烃链。 要查找全部化学元素的符号,可参见:.

新!!: 铁和化学符号 · 查看更多 »

化學元素豐度

化學元素豐度(Abundance of the chemical elements)是在測量上與所有元素相比較所得到含量多寡的比值。豐度可以是質量的比值或是莫耳數(氣體的原子數量比值或是分子數量比值),或是容積上的比值。在混合的氣體中測量氣體容積上的比值是最常用於表示豐度的方法,對混合的理想氣體(相對於是低密度和低壓的氣體)這與莫耳數是相當一致的。 例如,氧在水中的質量比是89%,因為這是水的質量和氧的質量的比值,但是氧在水中的莫耳比值只有33%,因為在水的莫耳數中只有三分之一是氧原子。在整個宇宙中,和在如同木星這樣的巨大的氣體行星中,氫和氦在質量上的豐度比值分別相對是74%和23-25%,但是摩爾(原子)比值卻高達92%和8%。但是,因為氫是雙原子分子,而氦在木星外層的大氣環境下只是單原子分子,以分子的摩爾數來比較,在木星大氣層中氫的豐度是86%,而氦的豐度是13%。 在本文中所提到的豐度,多數都是質量百分比的豐度。.

新!!: 铁和化學元素豐度 · 查看更多 »

元素

#重定向 化學元素.

新!!: 铁和元素 · 查看更多 »

克( →, →,符号 g),为质量单位,相等于千分之一公斤。一克等于国际千克原器质量的1‰。.

新!!: 铁和克 · 查看更多 »

四羰基铁酸二钠

四羰基铁酸二钠是化合物,化学式为Na2。有机合成使用这种对氧敏感的试剂,主要是在合成醛中。常用二恶烷络合其中的钠离子,这种二恶烷溶液也被称为Collman试剂。四羰基铁酸根离子为四面体结构。.

新!!: 铁和四羰基铁酸二钠 · 查看更多 »

四氟硼酸二茂铁

四氟硼酸二茂铁是一种有机金属化合物,化学式为BF4。这种盐由+阳离子和氟硼酸根阴离子(BF4-)组成。性质类似的六氟磷酸盐也是一种受欢迎的试剂。阳离子往往缩写成Fc+或(Cp2Fe)+。颜色为深蓝,具有顺磁性。 二茂铁盐有时用作单电子氧化剂,惰性还原产物二茂铁很容易从离子产物分离出来。在电化学中,二茂铁/二茂铁盐经常被用来作为参比电极。在0.1 M NBu4PF6乙腈溶液中,相比标准氢电极,Fc+/0电势为+0.641 V。.

新!!: 铁和四氟硼酸二茂铁 · 查看更多 »

四氧化三铁

四氧化三铁是铁的氧化物,化学式为Fe3O4,有时被写成FeO·Fe2O3。.

新!!: 铁和四氧化三铁 · 查看更多 »

矽燃燒過程

矽燃燒過程在天體物理的核融合反應序列中是非常短暫的過程,它發生在質量至少是8-11太陽質量的恆星。對恆星而言,矽燃燒是大質量恆星長期以來以核融合供應能量的最後階段,是燃料耗盡的生命終點,然後她們就將離開赫羅圖上的主序帶。它之前的幾個階段是氫、氦、碳、氖、和氧燃燒過程。 當重力收縮使恆星的核心溫度升高到27至35億K的高溫時,確實的溫度依據恆星的質量來決定,矽燃燒便開始了。當一顆恆星完成了矽燃燒階段之後,已經不再有燃料可供融合。恆星將發生災難式的坍塌,並且可能會爆炸成被稱為II型的超新星。.

新!!: 铁和矽燃燒過程 · 查看更多 »

硝酸

硝酸(分子式:)是一种强酸,其水溶液俗称硝镪水。纯硝酸为无色液体,沸点83℃,在-42℃时凝结为无色晶体,与水混溶,有强氧化性和腐蚀性。其不同浓度水溶液性质有别,市售浓硝酸为共沸物,溶质质量分数为69.2%,一大气压下沸点为121.6℃,密度为1.42g·cm-3,约16mol·L-1,溶质重量百分比足够大(市售浓度最高为98%以上)的,称为发烟硝酸,硝酸是一种重要的化工原料。 硝酸的酸酐是五氧化二氮()。.

新!!: 铁和硝酸 · 查看更多 »

硫是一种化学元素,在元素周期表中它的化学符号是S,原子序数是16。硫是一种非常常见的无味无臭的非金属,纯的硫是黄色的晶体,又稱做硫黄、硫磺。硫有许多不同的化合价,常見的有-2, 0, +4, +6等。在自然界中常以硫化物或硫酸盐的形式出现,尤其在火山地区纯的硫也在自然界出现。硫单质难溶于水,微溶于乙醇,易溶于二硫化碳。对所有的生物来说,硫都是一种重要的必不可少的元素,它是多种氨基酸的组成部分,尤其是大多数蛋白质的组成部分。它主要被用在肥料中,也廣泛地被用在火药、潤滑劑、殺蟲劑和抗真菌剂中。.

新!!: 铁和硫 · 查看更多 »

硫酸

硫酸(化学分子式為)是一种具有高腐蚀性的强矿物酸,一般為透明至微黄色,在任何浓度下都能与水混溶并且放热。有时,在工业製造过程中,硫酸也可能被染成暗褐色以提高人们对它的警惕性。 作為二元酸的硫酸在不同浓度下有不同的特性,而其对不同物质,如金属、生物组织、甚至岩石等的腐蚀性,都归根于它的强酸性,以及它在高浓度下的强烈脱水性(化学性质)、吸水性(物理性质)与氧化性。硫酸能对皮肉造成极大的伤害,因为它除了会透过酸性水解反应分解蛋白质及脂肪造成化学烧伤外,还会与碳水化合物发生脱水反应并造成二级火焰性灼伤;若不慎入眼,更会破坏视网膜造成永久失明。故在使用时,应做足安全措施。另外,硫酸的吸水性可以用来干燥非碱性气体 。 正因為硫酸有不同的特性,它也有不同的应用,如家用强酸通渠剂、铅酸蓄电池的电解质、肥料、炼油厂材料及化学合成剂等。 硫酸被广泛生產,最常用的工业方法為接触法。.

新!!: 铁和硫酸 · 查看更多 »

硫酸亚铁

硫酸亚铁、硫酸铁(II)是化学式为FeSO4的无机化合物,最常使用的是它蓝绿色的七水合物。 无水晶体的标准摩尔生成焓为ΔfH°solid.

新!!: 铁和硫酸亚铁 · 查看更多 »

硅(Silicon,台湾、香港及澳門称為--,舊訛稱為釸,中國大陸稱為--)是一种类金属元素,化学符号為Si,原子序數為14,属于元素周期表上的IVA族。 硅原子有4个外圍电子,与同族的碳相比,硅的化学性质相對稳定,活性較低。硅是极为常见的一种元素,然而它极少以單質的形式存在於自然界,而是以复杂的硅酸盐或二氧化硅等化合物形式广泛存在于岩石、砂砾、尘土之中。在宇宙储量排名中,矽位於第八名。在地壳中,它是第二丰富的元素,佔地壳总质量25.7%,仅次于第一位的氧(49.4%)。.

新!!: 铁和硅 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

新!!: 铁和碳 · 查看更多 »

磁是一种物理现象,磁学是研究磁现象的一个物理学分支,磁性是物質響應磁場作用的性质。磁性表现在順磁性物質或铁磁性物質(如铁钉)會趨向於朝著磁場較強的區域移動,即被磁場吸引;反磁性物質則會趨向於朝著磁場較弱的區域移動,即被磁場排斥;還有一些物質(如自旋玻璃、反鐵磁性等)會與磁場有更複雜的關係。 依照溫度、壓強等參數的不同,物質會顯示出不同的磁性。表现出磁性的物质通称为磁体,原来不具有磁性的物质获得磁性的过程称为磁化,反之称为退磁。磁鐵本身會產生磁場,但本质上磁场是由电荷运动產生,如磁铁内部未配對电子的自旋,会产生磁场,当这些磁场的方向一致时,宏观上就表现为磁性。.

新!!: 铁和磁 · 查看更多 »

磁鐵礦

磁铁矿为一种具有亚铁磁性的矿物,其富含四氧化三铁(化学式为Fe3O4,分子量为231.54)。 产于变质矿床和内生矿床中,氧化后变为赤铁矿或褐铁矿,是炼铁的主要原料。.

新!!: 铁和磁鐵礦 · 查看更多 »

类地行星

類地行星(terrestrial planet),又稱地球型行星(telluric planet)或岩石行星(rocky planet)都是指以硅酸鹽岩石為主要成分的行星。這個項目的英文字根源自拉丁文的「Terra」,意思就是地球或土地。由於大眾媒體的流行,加上對象是行星,因此在二合一下採用「類地」行星這個譯名。類地行星與氣體巨星有極大的不同,氣體巨星可能沒有固體的表面,而主要的成分是氫、氦和存在不同物理狀態下的水。 截至2013年11月4日,根據開普勒太空任務的數據,銀河系估計共有逾400億圍繞著類太陽恆星或紅矮星公轉,位於適居帶內,且接近地球大小的类地行星存在。其中約110億顆是圍繞著類太陽恆星公轉。而最近的一個距離地球12光年。.

新!!: 铁和类地行星 · 查看更多 »

羰基

基(carbonyl group)在有机化学中,是一个形如 C.

新!!: 铁和羰基 · 查看更多 »

痕量元素

#重定向 稀有元素.

新!!: 铁和痕量元素 · 查看更多 »

生鐵

生鐵是碳的质量分数超过2%,并且其他元素的含量不超过表1中所规定的极限值的铁-碳合金。 生铁在熔融条件下可进一步处理成钢或者铸铁。生铁既可以液态铁水的形式交货,也可以铸锭及类似的固体块或颗粒等固态铸铁的形式交货。 將鐵礦石、焦炭、石灰石等原料投進高爐熔煉,由高爐直接煉得並在模中鑄造出來的。生鐵的質地相當的脆,必須將其煉造成鋼以後才能有較多的用途。 另一方面,亦有直接從生鐵搥打的炊具,比用熟鐵鑄造的炊具更耐用。铁和足量的盐酸充分反应后,因为生铁是鐵和碳的合金,會產生碳的固體残渣,而生成的氯化亚铁能溶解於水中,所以不会形成固體沉澱。.

新!!: 铁和生鐵 · 查看更多 »

电化学

电化学(electrochemistry)作为化学的分支之一,是研究两类导体(电子导体,如金属或半导体,以及离子导体,如电解质溶液)形成的接界面上所发生的带电及电子转移变化的科学。 传统观念认为电化学主要研究电能和化学能之间的相互转换,如电解和原电池。但电化学并不局限于电能出现的化学反应,也包含其它物理化学过程,如金属的电化学腐蚀,以及电解质溶液中的金属置换反应。.

新!!: 铁和电化学 · 查看更多 »

熔点

點、液化點(M.P.)是在大氣壓下晶体將其物態由固態轉變為液態的过程中固液共存状态的溫度;各种晶体的熔点不同,对同一种晶体,熔点又与所受压强有关,壓強越大,熔點越高。不過,與沸點不同,熔點受壓强的影響很小,因爲由固態轉變(熔化)為液態的过程中,物質的體積幾乎不變化。 進行相反動作(即由液態轉為固態)的溫度,稱之為凝固点、結晶點(對水而言也称為冰点),在一定大氣壓下,任何晶体的凝固点和熔点相同。習慣上,根據常溫(25℃)時物質的狀態使用凝固点或熔点稱呼這一個溫度:對於常溫下為固態的物質,這個溫度稱爲凝固点;對於常溫下為液態的物質,這個溫度稱爲熔点。 一般的,非晶体并没有固定的熔点和凝固点。.

新!!: 铁和熔点 · 查看更多 »

煤气

气从字面意思上讲是与煤有关的气体,但是在不同的使用环境下,煤气具有不同的解释:.

新!!: 铁和煤气 · 查看更多 »

盐 (化学)

在化学中,是指一类金属离子或銨根離子(NH)与酸根离子或非金屬離子结合的化合物,如硫酸钙,氯化铜,醋酸钠,一般来说盐是複分解反应的生成物,如硫酸与氢氧化钠生成硫酸钠和水,也有其他的反应可生成盐,例如置换反应。 盐分为單盐和合盐,單盐分為正盐、酸式盐、碱式盐,合盐分為複盐和錯盐。其中酸式盐除含有金属离子与酸根离子外还含有氢离子,碱式盐除含有金属离子与酸根离子外还含有氢氧根离子,複盐溶於水時,可生成與原盐相同离子的合盐;络盐溶於水時,可生成與原盐不相同的複雜离子的合盐-絡合物。 通常在標準狀況下,不可溶的盐會是固態,但也有例外,例如及离子液体。可溶盐的溶液及有导电性,因此可作為電解質。包括細胞的細胞質、血液、尿液及礦泉水中都含有許多不同的盐類。 强碱弱酸盐是强碱和弱酸反应的盐,溶于水显碱性,如碳酸钠。而强酸弱碱盐是强酸和弱碱反应的盐,溶于水显酸性,如氯化铁。.

新!!: 铁和盐 (化学) · 查看更多 »

隕石

隕石是小塊的固體碎片,它的來源是小行星或彗星,起源於外太空,對地球的表面及生物都有影響。在它撞擊到地表之前稱為流星。隕石的大小範圍從小型到極大不等。當流星體進入地球大氣層,由于摩擦、壓力以及大氣中氣體的化學作用,導致其温度升高并发光,因此形成了流星,包括火球,也稱為射星或墬星。火流星既是與地球碰撞的外星天體,也是異常明亮的流星,而像火球這樣的流星無論如何最終都會影響地球的表面。 更通俗的說法,在地球表面的任何一顆隕石都是來自外太空的一個天然物體。月球和火星上也有發現隕石。 被觀察到穿越大氣層或撞擊地球隕石稱為墬落隕石,其它的隕石都稱為發現隕石。截至2010年2月,只有大約1,086顆的墬落隕石的標本被收藏 ,但卻有38,660顆被確認的發現隕石.

新!!: 铁和隕石 · 查看更多 »

鎳-56

#重定向 鎳的同位素 Category:鎳的同位素.

新!!: 铁和鎳-56 · 查看更多 »

菱铁矿

菱铁矿是一种分布比较广泛的矿物,屬鐵的碳酸盐矿物,成份為碳酸亚铁(FeCO3)。因为它含有48%的铁和不含有硫或磷,它是一个有价值的铁矿物。锌,镁和锰通常替代铁造成菱铁矿-菱锌矿,菱铁矿-菱镁矿和菱铁矿-菱锰矿固溶体系列。 菱铁矿具有莫氏硬度3.75-4.25,比重为3.96,有白色条纹和玻璃光泽或珍珠光泽。 菱铁矿产于热液矿脉和沉积矿床中,并与重晶石,萤石,方铅矿,以及其他矿物是相关的。它也是在页岩和砂岩中常见成岩作用的矿物,在其中它有时形成凝结物。自然界的菱铁矿含有不同数量的杂质,一般经焙烧后可作炼铁原料。.

新!!: 铁和菱铁矿 · 查看更多 »

鐵的同位素

鐵(原子量:55.845(2))共有34個同位素,有四種天然同位素,其中有3個是穩定的,他們包括,豐度佔5.845%、,豐度佔91.754%、,豐度佔2.119% 、,豐度佔0.282%,其中在許多研究中表明可能具放射性,半衰期大於3.1×1022年,但目前尚未觀測到明確的衰變現象。下面列出24種鐵已知的放射性同位素半衰期等資料,也可以參考以查閱更精確的數值。 早期許多測量鐵的同位素組成多半是著重在伴隨核合成過程(也就是隕石相關研究)以及成礦分析來確定的變化量;然而,在過去十年中,在質譜分析技術的進步已經允許在短時間內檢測和定量天然存在的鐵的穩定同位素的比率。這項技術大部分已運用在地球科學和行星科學的相關研究,應用生物和工業系統也開始出現。.

新!!: 铁和鐵的同位素 · 查看更多 »

非金属元素

非金属元素是元素的一大类,在所有的118种化学元素中,非金属占了23种。在周期表中,除氢以外,其它非金属元素都排在表的右侧和上侧,属于p区。包括氢、硼、碳、氮、氧、氟、硅、磷、硫、氯、砷、硒、溴、碲、碘、-zh-hans:砹;zh-hk:砈;zh-tw:砈;-、氦、氖、氩、氪、氙、氡、Og。80%的非金属元素在现在社会中占有重要位置。.

新!!: 铁和非金属元素 · 查看更多 »

血红蛋白

血红蛋白,俗稱血色素,(Hemoglobin(美國) 或 haemoglobin(英國);縮寫︰Hb 或 Hgb)是高等生物体内负责运载氧的一种蛋白质。可以用平均細胞血紅蛋白濃度測出濃度。 血红蛋白存在于几乎所有的脊椎动物体内,在某些无脊椎动物组织也有分布。血液中的血红蛋白从呼吸器官中将氧气运输到身体其他部位释放,以满足机体氧化营养物质支持功能运转之需要,并将由此生成的二氧化碳带回呼吸器官中以排出体外。在哺乳动物中,血红蛋白占红细胞干重的97%、总重的35%。平均每克血红蛋白可结合1.34ml的氧气,是血浆溶氧量的70倍。一个哺乳动物血红蛋白分子可以结合最多四个氧分子。 血红蛋白也参与其他气体的转运:它能携带机体的部分二氧化碳(大约10%)。亦可将重要的调节分子一氧化氮结合在球状蛋白的某个硫醇基团上,在释放氧气的同时将其释放。 在红细胞及其祖系细胞以外也发现了血红蛋白——包括黑质中的A9多巴胺神经元、巨噬细胞、肺泡细胞以及肾脏中的系膜细胞。在这些组织中,血红蛋白作为抗氧化剂和铁代谢的调节因子存在。 血红蛋白和类血红蛋白分子在许多无脊椎动物、真菌和植物中也有分布。在这些机体中,血红蛋白可能携带氧气,抑或扮演转移和调节诸如二氧化碳、一氧化氮、硫化氢和硫化物的角色。其中一种称作豆血红蛋白(Leghemoglobin)的变体分子是用来清除氧气以免毒害诸如豆科植物的固氮根瘤的厌氧系统的。 血红蛋白化学式:C3032H4816O812N780S8Fe4。人体内的血红蛋白由四个亚基构成,分别为两个α亚基和两个β亚基,在与人体环境相似的电解质溶液中血红蛋白的四个亚基可以自动组装成α2β2的形态。 血红蛋白的每个亚基由一条肽链和一个血红素分子构成,肽链在生理条件下会盘绕折叠成球形,把血红素分子抱在里面,这条肽链盘绕成的球形结构又被称为珠蛋白。血红素分子是一个具有卟啉结构的小分子,在卟啉分子中心,由卟啉中四个吡咯环上的氮原子与一个亚铁离子配位结合,珠蛋白肽链中第8位的一个组氨酸残基中的吲哚侧链上的氮原子从卟啉分子平面的上方与亚铁离子配位结合,当血红蛋白不与氧结合的时候,有一个水分子从卟啉环下方与亚铁离子配位结合,而当血红蛋白载氧的时候,就由氧分子顶替水的位置。 血紅蛋白與氧的結合可受到2,3-二磷酸甘油酸(2,3-BPG)的調控,成人的血紅素組成為α2β2,使成人血紅蛋白對氧的親和性降低,而胎兒血紅蛋白的組成為α2γ2,不受2,3-二磷酸甘油酸影響。 血红蛋白与氧结合的过程是一个非常神奇的过程。首先一个O2与血红蛋白四个亚基中的一个结合,与氧结合之后的珠蛋白结构发生变化,造成整个血红蛋白结构的变化,这种变化使得第二个氧氣分子相比于第一个氧氣分子更容易寻找血红蛋白的另一个亚基结合,而它的结合会进一步促进第三个氧氣分子的结合,以此类推直到构成血红蛋白的四个亚基分别与四个氧氣分子结合。而在组织内释放氧的过程也是这样,一个氧氣分子的离去会刺激另一个的离去,直到完全释放所有的氧氣分子,这种有趣的现象称为协同效应。 由于协同效应,血红蛋白与氧气的结合曲线呈S形,在特定范围内随着环境中氧含量的变化,血红蛋白与氧分子的结合率有一个剧烈变化的过程,生物体内组织中的氧浓度和肺组织中的氧浓度恰好位于这一突变的两侧,因而在肺组织,血红蛋白可以充分地与氧结合,在体内其他部分则可以充分地释放所携带的氧分子。可是当环境中的氧气含量很高或者很低的时候,血红蛋白的氧结合曲线非常平缓。 除了运载氧,血红蛋白还可以与二氧化碳、一氧化碳、氰离子结合,结合的方式也与氧完全一样,所不同的只是结合的牢固程度,一氧化碳、氰离子一旦和血红蛋白结合就很难离开,这就是煤气中毒和氰化物中毒的原理,遇到这种情况可以使用其他与这些物质结合能力更强的物质来解毒,比如一氧化碳中毒可以用静脉注射亚甲基蓝的方法来救治。.

新!!: 铁和血红蛋白 · 查看更多 »

褐铁矿

褐鐵礦(Limonite)是一種常見的鐵礦,常形成於鐵礦床的氧化帶中,多以次生礦形態存在。也經常因沉積作用生成於河床、海床、沼澤中。不會形成晶體結構,通常為結核狀、乳狀、土塊狀出現。並具有放射狀的結構。常以其他礦物之假晶形態出現,如:黃鐵礦。陶瓷板條痕為黃棕色。為相當重要的鐵礦資源之一。 中藥「禹餘糧」(別稱:餘糧石、白禹餘、太一禹餘糧、石腦)即此礦物。 愚人金 File:Limonite sample.jpg|沉積形褐鐵礦。.

新!!: 铁和褐铁矿 · 查看更多 »

高铁酸钾

铁酸钾是一种无机物,化学式为K2FeO4。.

新!!: 铁和高铁酸钾 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

新!!: 铁和质量 · 查看更多 »

贫血

貧血(anemia, anaemia,anæmia)通常定義為血液中紅血球或血紅素總數量下降的情形;也可以被定義為血液攜帶氧氣能力下降的情況。當貧血慢性發作時,其症狀往往不明顯,可能包含疲倦、虛弱、呼吸困難或活動能力下降;有時急性發作,就會出現較為強烈的症狀,可能包含、感覺將要昏倒以及想喝更多水。在一個人得很明顯之前,就已經有顯著的貧血狀況了。依據不同病因,可能會出現額外的症狀。 貧血的原因總共分為三種主要類型:一為失血;二為紅血球製造數量下降;三為紅血球細胞分解增加。失血可能是由於創傷以及消化道出血等;紅血球製造減少的原因包括鐵質缺乏、維生素B12缺乏症、地中海型貧血、以及各種等等。造成紅血球分解增加的原因包括基因上的異常(例如鐮刀型貧血)、感染(例如瘧疾)、以及自體免疫性疾病。貧血也可以依紅血球的大小及每個紅血球中的血紅素量進行分類。如果紅血球較正常小,則稱為 (microcytic anemia);如果較正常大則是(macrocytic anemia);如果大小在正常範圍內則屬於(normocytic anemia)。 貧血診斷標準可根據血紅素量(Hemoglobin)或血容比(血細胞壓積)(Hematocrit; Hct)。 在男性血紅素正常是130-140 g/L(13-14 g/dL),但女性正常是120-130 g/L(12-13 g/dL)。在男性血容比正常是41-50%,但女性血容比正常是36-44%。至於貧血的真正原因則需要更進一步的測試才能知道病因。 因红细胞容量测定复杂,临床常以血红蛋白浓度(Hb)、红细胞计数(RBC)、血容比(血细胞压积)(Hct)等指标替代,这就可能造成:.

新!!: 铁和贫血 · 查看更多 »

黄铁矿

铁矿,主要成分是二硫化亚铁FeS2,是提取硫、制造硫酸的主要矿物原料。其特殊的形态色泽,有观赏价值。一些黄铁矿磨制成宝石也很受欢迎。 黃鐵礦可經由岩漿分結作用、熱水溶液或昇華作用中生成,也可於火成岩、沉積岩中生成。在工業上,黃鐵礦用作硫和二氧化硫生成的原料。.

新!!: 铁和黄铁矿 · 查看更多 »

过渡金属

过渡元素(Transition element)是指元素周期表中d区的一系列金属元素,又称过渡金属(Transition metal)。一般来说,这一区域包括3到12一共十个族的元素,但不包括f区的内过渡元素。 “过渡元素”这一名词首先由门捷列夫提出,用于代表8、9、10三族元素。他认为从碱金属到锰族是一个“週期”,铜族到卤素又是一个,那么夹在两个周期之间的元素就有过渡的性质。而現今雖然過渡金屬这个词还在使用,但已和原本的意思不同。 过渡金属元素的一个周期称为一个过渡系,第4、5、6周期的元素分别属于第一、二、三过渡系。.

新!!: 铁和过渡金属 · 查看更多 »

赤铁矿

赤铁矿,是氧化铁的主要矿物形式,铁主要由赤铁矿冶炼。.

新!!: 铁和赤铁矿 · 查看更多 »

钝化

钝化()指金属表面由活泼态变化为不活泼态,使它不容易腐蚀的过程。由金属与介质自发相互作用(化学钝化),或金属通过电化学阳极氧化引起(阳极钝化)。 金属钝化會使其表面形成一层保护膜,厚几到几十纳米,钝化膜有侵蚀性阳离子难以扩散的结构,把金属与溶液隔离开,使金属溶解率大为降低。.

新!!: 铁和钝化 · 查看更多 »

鋼或稱鋼鐵、鋼材,是一種由鐵與其他元素結合而成的合金,當中最普遍的是碳。碳約佔鋼材重量的0.2%至2.1%,視乎鋼材的等級。其他有時會用到的合金元素還包括錳、鉻、釩和鎢.

新!!: 铁和钢 · 查看更多 »

钴是一种化学元素,符号为Co,原子序数27,属过渡金属,铁系元素之一,具有磁性。鈷礦主要為砷化物、氧化物和硫化物。此外,放射性的鈷-60同位素可進行癌症治療。.

新!!: 铁和钴 · 查看更多 »

钌是一种化学元素,它的化学符号是Ru,它的原子序数是44。 它的英文名称是羅塞尼亞的意思。钌是在1844年由波羅的海德裔俄国科学家Karl Ernst Claus发现的。 钌是硬质的银白色的过渡金属。钌可在铂矿中发现,仅在高温时才能加工。亦在一些铂合金中用作催化剂。.

新!!: 铁和钌 · 查看更多 »

铁器时代

铁器时代是考古學上继青铜时代之后的一个人类社会发展时代。这是在实际上所说的铁器时代是指的早期阶段,在晚期各国都已经进入了有文字记载的文明时代,也就多以各国的朝代来称呼其时代。当时人們已能冶铁和製造鐵器作为生产工具。其與之前時代的主要區別在於農業發展,宗教信仰與文化模式。 鐵器時代是在三時代系統中最後的主要時期,三時代系統是丹麥考古學家克里斯蒂安·于恩森·汤姆森在1836年時所提出,共分為石器時代、青銅器時代與鐵器時代。。 不同地區進入鐵器時代的時間有所不同,即使同在歐洲,日耳曼地區和羅馬進入鐵器時代的時間亦有所不同。世界上最早进入铁器时代的是赫梯王国,大约在公元前十四世纪年左右。中国在春秋(公元前五世纪)末年,大部分地区已使用铁器。 雖然各地區進鐵器時代的時間不盡相同,亦難以以準確的年份標示,但鐵器時代與之前時代的區別仍是十分明顯的。鐵器時代是指已經能運用很複雜的金屬加工來生産鐵器。鐵的硬度,高熔點與鐵礦的高蘊含量,使得鐵相對青銅來說來得便宜及可在各方面運用,所以其需求很快便遠超青銅。 在美洲及大洋洲的鐵器時代並不是發展自青銅器時代,因為鐵的運用是由歐洲探險家傳入的。.

新!!: 铁和铁器时代 · 查看更多 »

铁磁性

鐵磁性(Ferromagnetism)指的是一種材料的磁性狀態,具有自發性的磁化現象。各材料中以鐵最廣為人知,故名之。 某些材料在外部磁場的作用下得而磁化後,即使外部磁場消失,依然能保持其磁化的狀態而具有磁性,即所謂自發性的磁化現象。 所有的永久磁鐵均具有铁磁性或亞铁磁性。 基本上铁磁性这个概念包括任何在没有外部磁场时显示磁性的物质。至今依然有人这样使用这个概念。但是通过对不同显示磁性物质及其磁性的更深刻认识,学者们对这个概念做了更精确的定义。 一個物質的晶胞中所有的磁性離子均指向它的磁性方向時才被稱為是鐵磁性的。 若其不同磁性離子所指的方向相反,其效果能够相互抵消則被稱為反鐵磁性。 若不同磁性離子所指的方向相反,但是有强弱之分,其产生的效果不能全部抵消,則稱為亚铁磁性。 物質的磁性現象存在一個臨界溫度,在此溫度之上,铁磁性会消失而变成顺磁性,在此温度之下铁磁性才会保持。 對於鐵磁性和亞鐵磁性物质,此温度被稱為居里溫度(虽然都称为居里温度,但二者是有差别的);對於反鐵磁性物质,此温度被稱為奈爾溫度。 有人认为磁铁与铁磁性物质之间的吸引作用是人类最早对磁性的认识。Richard M. Bozorth,《Ferromagnetism》,1951年首版,1993年IEEE Press,New York作为“经典再版”再次发行,ISBN 0-7803-1032-2.

新!!: 铁和铁磁性 · 查看更多 »

铁锈

铁锈為铁氧化物的统称,通常为红色,由铁和氧气境下進行氧化還原反應而生成。不同情况下会生成不同形式的铁鏽。铁锈主要由三氧化二铁水合物Fe2O3·nH2O和氢氧化铁(FeO(OH), Fe(OH)3)组成。其他金属亦会被氧化,但是通常不称为“鏽”。足够的时间后,在氧气和水充足的情况下,铁会完全氧化成鏽。铝的氧化非常缓慢,因为氧气在铝的表面生成了一层致密的氧化铝薄膜,此反应称为钝化。.

新!!: 铁和铁锈 · 查看更多 »

铝(Aluminium 或Aluminum)是一种化学元素,属于硼族元素,其化学符号是Al,原子序数是13。相对密度是2.70。铝是一种较软的易延展的银白色金属。铝是地壳中第三大丰度的元素(仅次于氧和硅),也是丰度最大的金属,在地球的固体表面中占约8%的质量。铝金属在化学上很活跃,因此除非在极其特殊的氧化还原环境下,一般很难找到游离态的金属铝。被发现的含铝的矿物超过270种。最主要的含铝矿石是铝土矿。 铝因其低密度以及耐腐蚀(由于钝化现象)而受到重视。利用铝及其合金制造的结构件不仅在航空航太工业中非常关键,在交通和结构材料领域也非常重要。最有用的铝化合物是它的氧化物和硫酸盐。 尽管铝在环境中广泛存在,但没有一种已知生命形式需要铝元素。.

新!!: 铁和铝 · 查看更多 »

铜(copper)是化学元素,化学符号Cu(来自cuprum),原子序数29。纯铜是柔软的金属,表面刚切开时为红橙色帶金屬光澤、延展性好、导热性和导电性高,因此在电缆和电气、电子元件是最常用的材料,也可用作建筑材料,以及組成众多種合金。铜合金机械性能优异,电阻率很低,其中最重要的是青铜和黄铜。此外,铜也是耐用的金属,可以多次回收而无损其机械性能。 人类使用铜及其合金已有数千年历史。古罗马时期铜的主要开采地是塞浦路斯,因此最初得名cyprium(意为塞浦路斯的金属),后来变为cuprum,这是copper、cuivre和Kupfer的来源。二价铜盐是常见的铜化合物,常呈蓝色或绿色,是蓝铜矿和绿松石等矿物颜色的来源,历史上曾广泛用作颜料。铜质建筑结构受腐蚀后会产生铜绿(碱式碳酸铜)。装饰艺术主要使用金属铜和含铜的颜料。 铜是所有生物所必需的微量膳食矿物质,因为它是呼吸酶复合体细胞色素c氧化酶的关键组分。软体动物和甲壳亚门动物的血液色素血蓝蛋白中含有铜。鱼类和其他哺乳动物的血液中则是含铁的复合物血红蛋白。铜在人体中主要分布于肝脏、肌肉和骨骼中。铜的化合物可用作、杀真菌剂和木材防腐剂。.

新!!: 铁和铜 · 查看更多 »

锰(manganese)是一种化学元素,它的化学符号是Mn,它的原子序数是25,是一种过渡金属。.

新!!: 铁和锰 · 查看更多 »

金(gold)是化学元素,化学符号Au(来自aurum),原子序数79。纯金是有明亮光泽、黄中带红、柔软、密度高、有延展性的金属。金在元素周期表中在11族,属过渡金属,是化学性质最不活泼的几种元素之一。金在标准状况下是固体,在自然界中常以游离态单质形式(自然金)存在,如岩石、地下及沖積層中堆积的砂金或金粒。金能和游离态的银形成固溶体琥珀金,在自然界中也能和铜、钯形成合金。矿物中的金化合物不太常见,主要是碲化金。 金的原子序数在宇宙中天然存在的元素中是较高的。据信这种重元素是在两颗中子星碰撞时的超新星核合成中产生,在太阳系形成前的尘埃中就已存在。由于地球形成之初还处于熔化状态,的金几乎都已沉入地核。因此,现在地球上地壳和地幔的金多是拜后来后期重轰炸期(约40亿年前)的小行星撞击事件所赐。 金能抵抗单一酸的侵蚀,但却能被王水溶解(“王水”因此得名)。这种混合酸能和金反应生成四氯合金酸根离子。金也能溶于碱性氰化物溶液,这是其开采和电镀的原理。能夠溶解銀及卑金屬的硝酸不能溶解金,这些性質是黃金精煉技術的基础,也是用硝酸来鉴别物品裡是否含有金的原理,这一方法是英語諺語「acid test」的語源,意指用「測試黃金的標準」来測試目標物是否名副其實。此外,金能溶于水銀,形成汞齊(也是一种合金),但这并非化学反應。 金在有历史记载以前就是一種廣受歡迎的貴金屬,用于貨幣、保值物、珠寶和艺术品。以前国内和国际通常实行以金为基础的金本位货币制度,但1930年代时金币已停止流通。70年代,随着布雷頓森林協定的结束,世界范围内的金本位制终于让位给法定货币制度。不过因其稀有,易于熔炼、加工和铸币,色泽独特,抗腐蚀,不易和其他物质反应等特点,金的价值不减。 底,人类总共开采18.36万公噸(相当于9513立方米)的金。 产量中的50%用于珠宝,40%用于投资,还有10%用于工业。 因其高延展性,抗腐蚀性,在大多数反应中的惰性和导电性,金一直在各类电子设备中用作耐腐蚀的电子连接器,这是它的主要工业用途。此外它还用于屏蔽红外线,生产和金箔,以及修补牙齿。有些金盐在医学上仍作为消炎药使用。.

新!!: 铁和金 · 查看更多 »

金属

金属是一种具有光泽(对可见光强烈反射)、富有延展性、容易导电、传热等性质的物质。金属的上述特质都跟金属晶体内含有自由电子有关。由於金屬的電子傾向脫離,因此具有良好的導電性,且金属元素在化合物中通常帶正价電,但當溫度越高時,因為受到了原子核的熱震盪阻礙,電阻將會變大。金屬分子之間的連結是金屬鍵,因此隨意更換位置都可再重新建立連結,這也是金屬伸展性良好的原因之一。 在自然界中,絶大多數金屬以化合態存在,少數金屬例如金、銀、鉑、鉍可以游離態存在。金屬礦物多數是氧化物及硫化物。其他存在形式有氯化物、硫酸鹽、碳酸鹽及矽酸鹽。 屬於金屬的物質有金、銀、銅、鐵、鋁、錫、錳、鋅等。在一大氣壓及25攝氏度的常温下,只有汞不是固體(液態),其他金属都是固體。大部分的純金屬是銀色,只有少數不是,例如金為黄色,銅為暗紅色。 在一些個別的領域中,金屬的定義會有些不同。例如因為恆星的主要成份是氫和氦,天文學中,就把所有其他密度較高的元素都統稱為「金屬」。因此天文學和物理宇宙學中的金屬量是指其他元素的總含量。此外,有許多一般不會分類為金屬的元素或化合物,在高壓下會有類似金屬的特質,稱為「金屬性的同素異形體」。.

新!!: 铁和金属 · 查看更多 »

是一種化學元素,化學符號為Ni,原子序數為28。它是一種有光澤的銀白色金屬,其銀白色帶一點淡金色。鎳屬於過渡金屬,質硬,具延展性。純鎳的化學活性相當高,這種活性可以在反應表面積最大化的粉末狀態下看到,但大塊的鎳金屬與周圍的空氣反應緩慢,因為其表面已形成了一層帶保護性質的氧化物。即使如此,由於鎳與氧之間的活性夠高,所以在地球表面還是很難找到自然的金屬鎳。地球表面的自然鎳都被封在較大的鎳鐵隕石裏面,這是因為隕石在太空的時候接觸不到氧氣的緣故。在地球上,這種自然鎳總會和鐵結合在一起,這點反映出它們都是超新星核合成主要的最終產物。一般認為地球的地核就是由鎳鐵混合物所組成的。 鎳的使用(天然的隕鎳鐵合金)最早可追溯至公元前3500年。阿克塞尔·弗雷德里克·克龙斯泰特於1751年最早分離出鎳,並將它界定為化學元素,儘管他最初把鎳礦石誤認為銅的礦物。鎳的外語名字來自德國礦工傳說中同名的淘氣妖精(Nickel,與英語中魔鬼別稱"Old Nick"相近),這是由於鎳銅礦不能用煉銅的方法煉出銅來,所以被比擬成妖魔。鎳最經濟的主要來源為鐵礦石褐鐵礦,含鎳量一般為1-2%。鎳的其他重要礦物包括硅鎂鎳礦及鎳黃鐵礦。鎳的主要生產地包括加拿大的索德柏立區(一般認為該處是隕石撞擊坑)、太平洋的新喀里多尼亞及俄羅斯的諾里爾斯克。 由於鎳在室溫時的氧化緩慢,所以一般視為具有耐腐蝕性。歷史上,因為這一點鎳被用作電鍍各種表面,例如金屬(如鐵及黃銅)、化學裝置內部及某些需要保持閃亮銀光的合金(例如鎳銀)。世界鎳生產量中的約6%仍被用於抗腐蝕純鎳電鍍。鎳曾經是硬幣的常見成份,但現時這方面已大致上被較便宜的鐵所取代,尤其是因為有些人的皮膚對鎳過敏。儘管如此,英國還是在皮膚科醫生的反對下,於2012年開始再使用鎳鑄造錢幣。 只有四種元素在室溫時具有鐵磁性,鎳就是其中一種。含鎳的鋁鎳鈷合金永久磁鐵,其磁力強度介乎於含鐵的永久磁鐵與稀土磁鐵之間。鎳在現代世界的的地位主要來自於它的各種合金。全世界鎳產量中的約60%被用於生產各種鎳鋼(特別是不鏽鋼)。其他常見的合金,還有一些的新的高溫合金,就幾乎就佔盡了餘下的世界鎳用量。用於製作化合物的化學用途只佔了鎳產量的不到3%。作為化合物,鎳在化學製造有好幾種特定的用途,例如作為氫化反應的催化劑。某些微生物和植物的酶用鎳作為活性位點,因此鎳是它們重要的養分。.

新!!: 铁和镍 · 查看更多 »

配合物

配位化合物(coordination complex),--,包含由中心原子或离子与几个配体分子或离子以配位键相结合而形成的复杂分子或离子,通常称为「配位单元」。凡是含有配位单元的化合物都称做配位化合物。研究配合物的化学分支称为配位化学。 配合物是化合物中较大的一个子类别,广泛应用于日常生活、工业生产及生命科学中,近些年来的发展尤其迅速。它不仅与无机化合物、有机金属化合物相關聯,并且与现今化学前沿的原子簇化学、配位催化及分子生物学都有很大的重叠。.

新!!: 铁和配合物 · 查看更多 »

腐蚀

腐蚀(Rusting)是指因工程材料与其周围的物质发生化学反应而导致解体的现象。通常这个术语用来表示金属物质与氧化物如氧气等物质发生电化学的氧化反应。例如,使用金属铁制成的产品会由于铁原子在固体溶剂中发生氧化而导致生锈,这就是电化学腐蚀的一个众所周知的例子。这种反应通常会产生对应金属的氧化物,也可能产生盐。换句话说,腐蚀指的是金属物质因化学反应而导致的损耗。 很多合金结构都仅仅因为暴露在潮湿的空气中遭到腐蚀,但是,腐蚀过程会受到材料所接触的物质的强烈影响。腐蚀可能在某个局部集中出现,从而导致材料上出现孔洞甚至裂缝,也有可能在一个较大面积的表面上几乎平均的分布。由于腐蚀是一种扩散控制的过程,通常只有材料表面产生腐蚀。因此,可以通过一些对暴露的表面进行加工的办法,如钝化和铬酸盐转换等处理办法来增加材料的耐腐蚀性。然而,仍然有一些腐蚀的机制无法观察到,也难以预料。 腐蚀还可以发生在其他不是金属的物质上,例如陶瓷和聚合物。.

新!!: 铁和腐蚀 · 查看更多 »

酸(有时用“HA”表示)的传统定义是当溶解在水中时,溶液中氢离子的浓度大于纯水中氢离子浓度的化合物。换句话说,酸性溶液的pH值小于水的pH值(25℃时为水的pH值是7)。酸一般呈酸味,但是品尝酸(尤其是高浓度的酸)是非常危险的。酸可以和碱发生中和作用,生成水和盐。酸可分为无机酸和有机酸两种。.

新!!: 铁和酸 · 查看更多 »

恆星核合成

恆星核合成 是解釋重元素是由恆星內部的原子經由核融合創造出來的化學元素理論。自從大爆炸期間產生氫、氦、鋰之後,恆星核合成就一直持續地創造重元素。這原本是一個高度預測的理論,但經由觀測到的元素豐度和計算的基礎上,已經有了良好的協定。它解釋了宇宙中元素的豐度為何會隨著時間而增長,以及為什麼某些元素及其同位素會比其它的元素更豐富。這個理論最初是由弗雷德霍伊爾(Fred Hoyle)in在1946年提出,然後在1954年精煉 。進一步的發展,特別是對重元素中比鐵重的元素經由中子捕獲的核合成,在霍伊爾和伯比奇夫婦(傑佛瑞·伯比奇和瑪格麗特·伯比奇)、威廉·福勒四人於1957年提出了著名的元素合成理論(即著名的B2FH論文) ,成為天文物理學史上最受人引用的論文之一。 恆星演化是因它們的組成(元素的豐度)在生命歷程中的改變。首先是氫燃燒(主序星),然後是氦燃燒(紅巨星),並逐漸燃燒更重的元素。然而,因為這些重元素都包含在恆星內部,這本身並沒有明顯的改變宇宙中元素的豐度。在它們生命的後期,低質量的恆星將通過恆星風慢慢地彈出它們的大氣層,形成行星狀星雲;而質量更高的恆星將通過超新星的突發性災難事件來噴發質量。超新星核合成這個名詞被用來描述大質量恆星(12-35倍太陽質量)在演化和爆炸前所創造的元素。這些大質量恆星從碳()到鎳()的各種新同位素的最主要來源。 進一步的燃燒序列是由重力坍縮和其相應的加熱驅動的,導致重元素的碳、氧和矽燃燒。然而,大多數原子量範圍在 (從矽到鎳)核合成的重元素都是由恆星上層崩潰到核心,造成一個壓縮衝擊波反彈向外形成的。短暫的衝擊波升高了大約50%的溫度,從而引起了大約1秒鐘的劇烈燃燒。在大質量恆星最後的燃燒稱為超新星核合成或是"爆炸核合成",是恆星產生重元素的最後一個時期。 促進核合成理論發展的因素是發現宇宙中化學元素的豐度。對具體描述的需要已經受到太陽系化學同位素相對豐度的啟發。當繪製在以元素的原子數為函數的圖表上時,這些豐度有一個參差不齊的鋸齒狀形狀,而變化的因素數以萬計(參見核合成#歷史)。這表明這個自然的過程不是隨機的。第二個啟發是在20世紀了解恆星的核合成發生過程,它被認識到太陽的長壽,和從核融合反應釋放出來的能量是光與熱的來源 。.

新!!: 铁和恆星核合成 · 查看更多 »

核聚变

--,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。在此过程中,物质没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子(能量)。核聚变是给活跃的或“主序的”恆星提供能量的过程。 两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 舉個例子:两个質量小的原子,比方說兩個氚,在一定条件下(如超高温和高压),會发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放。 原子核中蕴藏巨大的能量。根据质能方程E.

新!!: 铁和核聚变 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

新!!: 铁和氢 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

新!!: 铁和氧 · 查看更多 »

氧化

氧化又被称为氧化作用、氧化反应。是还原剂(被氧化物)与氧化剂(被还原物)之间的氧化数升降。还原剂的氧化数上升(失去电子),氧化剂的氧化数下降(获得电子)。 一般物质与氧气发生氧化时放热,个别可能吸热,如氮气与氧气的反应。电化学中阳极发生氧化,阴极发生还原。.

新!!: 铁和氧化 · 查看更多 »

氧化亚铁

氧化亚铁,是铁的氧化物之一。其外观呈藍灰色粉末,化学式为FeO,由氧化态为II价的铁与氧共价结合。它的矿物形式为方铁矿(wüstite)。氧化亚铁经常容易与铁锈混淆,但铁锈的主要成分为水合氧化铁。氧化亚铁属于非整比化合物,其中铁和氧元素的比例会发生变化,范围从Fe0.84O到Fe0.95O。.

新!!: 铁和氧化亚铁 · 查看更多 »

氧化物

氧化物,是负价氧和另外一个化學元素組成的二元化合物,例如氧化鐵(Fe2O3)或氧化鋁(Al2O3),通常經由氧化反應產生。氧化物在地球的地殻極度普遍,而在宇宙的固體中也是如此。 氧离子(O2−)是氢氧根(OH−)离子的共轭碱,存在某些氧化物离子晶体中。自由的氧离子具强碱性(pKb ~ -22),在水溶液中是不稳定的。 氧化物中的氧元素应该呈负氧化态。如果含氧二元化合物中的氧为正氧化态,例如二氟化二氧(O2F2)和二氟化氧(OF2),则它们一般称为氟化物,而非氧化物。.

新!!: 铁和氧化物 · 查看更多 »

氧化铁

氧化铁,或称三氧化二铁,化学式Fe2O3,是铁锈和赤铁矿的主要成分。铁锈的主要成因是鐵金屬在杂质碳的存在下,與環境中的水份和氧氣反应,鐵金屬便會生鏽。.

新!!: 铁和氧化铁 · 查看更多 »

氧气

氧气(Oxygen, Dioxygen,分子式O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助燃。.

新!!: 铁和氧气 · 查看更多 »

氩(Argon)是一种化学元素,在希臘語有「不活潑」的意思,由它的特性而來。Hiebert, E. N. Historical Remarks on the Discovery of Argon: The First Noble Gas.

新!!: 铁和氩 · 查看更多 »

氯是一种卤族化学元素,化学符号為Cl,原子序数為17。.

新!!: 铁和氯 · 查看更多 »

氯化铁

氯化铁(FeCl3)又称三氯化铁,是三价铁的氯化物。它易潮解,在潮湿的空气会水解,溶于水时会释放大量热,并产生啡色的酸性溶液。这个溶液可蚀刻铜制的金属,甚至不锈钢。 无水的氯化铁是很强的路易斯酸,可用作有机合成的催化剂。啡黄色的六水物是氯化铁常见的商业制品,其结构为Cl·2H2O(参见三氯化铬)。 加热至约315℃,氯化铁便熔化,然后变成气态。气体内含有一些Fe2Cl6(参见氯化铝),会渐渐分解成氯化亚铁(FeCl2)和氯气(Cl2)。.

新!!: 铁和氯化铁 · 查看更多 »

水合

水合反应(hydration reaction),也叫作水化。 在无机化学中指物质溶解在水里时,与水发生的化学作用。一般指溶质分子(或离子)和水分子发生作用,形成水合分子(或水合离子)的过程。 例子 无水硫酸铜与水作用生成五水硫酸铜: CuSO4+5H2O→CuSO4·5H2O 在有机化学中指分子中的不饱和键(双键或三键)在催化剂作用下与水化合的作用。如乙烯与水在一定温度、压力和催化剂的条件下,发生反应生成乙醇: CH2.

新!!: 铁和水合 · 查看更多 »

水分子

#重定向 水的性質.

新!!: 铁和水分子 · 查看更多 »

水蒸气

水蒸氣(也称氛气),是水(H2O)的气体形式。当水达到沸点时,水就变成水蒸氣。水蒸气在空气中是无色的。在海平面一标准大气压下,水的沸点为100°C或212°F或373.15K。当水在沸点以下时,水也可以缓慢地蒸发成水蒸氣。而在極低壓環境下(小於0.006大气压),冰會直接升华變水蒸氣。水蒸气之密度为 0.59764 千克/立方米(100°C/212°F,101330Pa)。 水蒸氣可能會造成温室效应,是一种温室气体。.

新!!: 铁和水蒸气 · 查看更多 »

沸点

沸点是指物质沸腾时的温度,更严格的定义是液体成为气体的温度。液体在未达到沸点温度时也会通过挥发变成气体。然而,挥发是一种液体表面的现象,也就是说只有液体表面的分子才会挥发。沸腾则是在液体的整个部分发生的变化,处于沸点的液体的所有分子都会蒸发,不断地产生气泡。.

新!!: 铁和沸点 · 查看更多 »

游离态

游离态是指元素存在的一种状态,与化合态相对。特别地,如果某物质只由一种元素组成,那么其状态即被称为游离态。游离态物质,即是单质,如游离铁(Fe),游离硫(S)等。通常来讲,绝大部分元素的游离态在地球上的自然条件下都不稳定,在其他物质存在时很容易与之化合,而成为化合态。无论从种类还是物质的量上来说,地球上见到的大部分物质都是化合物。除了利用蒸馏、电解等方式人工制备的单质之外,自然状态下常见的游离态元素包括空气的组成成分氧气、氮气和稀有气体,石墨和金刚石,硫磺以及一部分不活泼的金属。尽管它们也是游离态的,但它们一般不容易与其他物质化合。.

新!!: 铁和游离态 · 查看更多 »

流星体

流星體是太陽系內,小至沙塵(sand),大至巨礫(boulder),成為顆粒狀的碎片。流星體進入地球(或其它行星)的大氣層之後,在路徑上發光並被看見的階段則被稱為流星。許多流星來自相同的方向,並在一段時間內相繼出現,則稱為流星雨。.

新!!: 铁和流星体 · 查看更多 »

摄氏温标

摄氏温标是世界上普遍使用的温标,符号为°C,属于公制单位。 摄氏温标的规定是:在标准大气压,纯水的凝固点(即固液共存的温度)為0°C,水的沸點為100°C,中間劃分為100等份,每等份為1°C。.

新!!: 铁和摄氏温标 · 查看更多 »

晶体结构

晶体结构是指晶体的周期性结构。固体材料可以分为晶体、准晶体和非晶体三大类,其中,晶体内部原子的排列具有周期性,外部具有规则外形,比如钻石(图)。 Hauy最早提出晶体的規則外型是因为晶體内部原子分子呈規則排列,比如鑽石所具有的完美外形和優良光学性質就可以歸結為其内部原子的規則排列。20世紀初期,勞厄發明X射線衍射法,從此人們可以使用X射线來研究晶體内部的原子排列,其研究结果進而證實了Hauy的判斷。 晶體内部原子排列的具体形式一般稱之为晶格,不同的晶体内部原子排列稱為具有不同的晶格結構。各種晶格結構又可以歸納為七大晶系,各種晶系分别与十四種空間格(稱作布拉维晶格)相對應,在宏观上又可以归结为三十二种空间点群,在微观上可进一步细分为230个空间群。 对于晶体结构的研究是研究固体材料的宏观性质及各种微观过程的基础。專門研究分子結晶結構的科學稱為晶體學,經常應用在化學、生物化學與分子生物學。.

新!!: 铁和晶体结构 · 查看更多 »

8族元素

8族元素是元素周期表的第8族元素(VIII族左列),位于7族元素和9族元素之间,包括的元素有:.

新!!: 铁和8族元素 · 查看更多 »

重定向到这里:

26號元素FeFerrumIron元素26第26號元素

传出传入
嘿!我们在Facebook上吧! »